LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTHSEMESTER – APRIL 2017

MT 5407- FORMAL LANGUAGES AND AUTOMATA

Date: 03-05-2017 01:00-04:00

Dept. No.

Max.: 100 Marks

SECTION A

ANSWER ALL QUESTIONS.

 $(10 \times 2 = 20)$

- 1) Define finite automaton.
- 2) Write the procedure for constructing the state diagram.
- 3) What is meant by acceptability of a string by NFA?
- 4) Write any two properties of regular sets.
- 5) Define Context-free Languages.
- 6) Define the union of two languages.
- 7) What is meant by unambiguous?
- 8) Define leftmost derivation tree.
- 9) Define Star closure.
- 10) Define Greibach normal form.

SECTION B

ANSWER ANY FIVE QUESTIONS.

 $(5\times8=40)$

- 11. Let $M = \{(q_0, q_1, q_2, q_3, q_4), (a, b), \delta, q_0, \{q_0\}\}$ is a finite automaton, where δ is given by $\delta(q_0, a) = q_3, \delta(q_0, b) = q_1, \delta(q_1, a) = q_2, \ \delta(q_1, b) = q_4, \delta(q_2, a) = q_3, \delta(q_3, a) = q_1, \delta(q_3, b) = q_2, \delta(q_4, a) = q_1, \delta(q_4, b) = q_2.$ Construct the state table
 - and State diagram.
- 12. Construct a finite automaton M accepting {ab, ba}.
- 13. Construct an NFA accepting L given by $L = \{x \in \{a,b\}^*/|x| \ge 3 \text{ and the third symbol of } x \text{ from right is } a\}.$
- 14. Write short note on Chomskian hierarchy.
- 15. Briefly explain the uses and characteristics of the generation trees.
- 16. Let L= $\{a^nb^n, n \ge 1\}$. Then prove that the grammar G = (N, T, P, S) where $N = \{S\}$,
- $T = \{a, b\}$ and $P = \{S \rightarrow aSb, S \rightarrow ab\}$ generates L.
 - 17. Prove that the families of PSL, CSL, CFL and RL are closed under product.
 - 18. Prove that $L = \{a^i / i \text{ is a prime }\}$ is not a CFL.

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

19. a) Construct a deterministic finite automaton FA equivalent to NFA

 $M = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\}), \delta$ is given below.

δ	a	b
q_0	$\{q_0, q_1\}$	q_0
q_1	q_2	q_1
q_2	q_3	q_3
q_3	-	q_2

b) Find $\hat{\delta}(q_0, 1001)$ for the NFA given by $M = \{(q_0, q_1, q_2, q_3), (0,1), \delta, q_0, \{q_3\}\}$ and δ is defined in the following table: (10+10)

δ	0	1
q_0	$\{q_0, q_1\}$	$\{q_0, q_2\}$
q_1	q_3	_
q_2	_	q_3
q_3	q_3	q_3

- 20. a) Find M such that $T(M) = \{b^m ab^n, m, n \ge 1\}$.
 - b) State and prove pumping lemma.

(8+12)

21. a) Prove that G is Ambiguous for the grammar G = (N, T, P, S) where

 $N = \{S, (P_r), (VP), V, A, N, (Aux), P\}, T = \{They, are, flying, planes\},$

 $P = \{S \rightarrow (P_r)(VP), P_r \rightarrow They, VP \rightarrow (V)(NP), V \rightarrow are, NP \rightarrow (A)(N), A \rightarrow flying, N \rightarrow planes, V \rightarrow (Aux)(P),$

$$(Aux) \rightarrow are, NP \rightarrow N, P \rightarrow flying$$
.

- b) Let G = (N, T, P, S) where $N = \{S, A\}$, $T = \{a, b\}$. Construct a production rule to showthat the word abab has two different leftmost derivations and generation trees. (10+10)
- 22. a) Let $G = (\{S, Z, A, B\}, \{a, b\}, P, S)$ where P consists of the following productions:

1.
$$S \rightarrow aSA$$
 2. $S \rightarrow aZA$ 3. $Z \rightarrow bZB$ 4. $Z \rightarrow bB$ 5. $BA \rightarrow AB$ 6. $AB \rightarrow Ab$

7. $bB \rightarrow bb$ 8. $bA \rightarrow ba$ 3. $aA \rightarrow aa$.

Then prove that $L(G) = \{a^n b^m a^n b^m / n, m \ge 1\}$ is a CSL.

b) State and prove Chomsky Normal form theorem. (12+8)
