LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTHSEMESTER - APRIL 2017

MT 5508 / MT 5502 - LINEAR ALGEBRA

Date: 20-04-2017

Dept. No.

Max.: 100 Marks

01:00-04:00

PART A

ANSWERALL THE QUESTIONS

 $10 \times 2 = 20 marks$

- 1. Define a vector space V over a field F.
- 2. Show that the vectors (0,1,1), (0,2,1) and (1,5,3) in \mathbb{R}^3 are linearly independent over \mathbb{R} , the field of real numbers.
- 3. Prove that the vectors (1,0,0), (1,1,0) and (1,1,1) form a basis of \mathbb{R}^3 , where \mathbb{R} is the field of real numbers.
- 4. Verify that $T: \mathbb{R}^2 \to \mathbb{R}$ defined by T(a,b) = ab for all $a,b \in \mathbb{R}$ is a vector space homomorphism.
- 5. Normalize (1+2i, 2-i, 1-i) in C^3 relative to the standard inner product.
- 6. If $T \in A(V)$ and $\lambda \in F$ and λ is an eigenvalue of T then prove that $\lambda I T$ is singular.
- 7. Show that $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is orthogonal.
- 8. Define trace of a matrix and give an example.
- 9. Find the rank of the following matrix over the field of rational numbers $\begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}$
- 10. If $T \in A(V)$ is Hermitian, then prove that all its eigenvalues are real.

PART B

ANSWERANY FIVE QUESTIONS

 $(5 \times 8 = 40 marks)$

- 11. Prove that the union of two subspaces of a vector space *V* over *F* is a subspace of *V* if and only if one is contained in the other.
- 12. If S and T are subsets of a vector space V over F, then prove the following:
 - i) S is subspace of V if and only if L(S) = S.
 - ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
 - iii) L(L(S)) = L(S).
- 13. Let V be a finite dimensional vector space and suppose that one basis has n elements and another basis has m elements . Then prove that m = n.
- 14. If V is a vector space of finite dimension and W is a subspace of V, then prove that $\dim V/W = \dim V \dim W$.

- 15. If $\lambda_1, \lambda_2, ...\lambda_n$ are distinct eigenvalues of $T \in A(V)$ and if $v_1, v_2, ...v_n$ are eigenvectors of T belonging to $\lambda_1, \lambda_2, ...\lambda_n$, respectively then prove that $v_1, v_2, ...v_n$ are linearly independent over F.
- 16. If $A, B \in F_n$ and If $\lambda \in F$, then prove that
 - i) $(\lambda A)^t = \lambda A^t$
 - ii) $(A^t)^t = A$
 - iii) $(A+B)^t = A^t + B^t$
 - iv) $(AB)^t = B^t A^t$
- 17. Investigate for what values of λ , μ the system of equations

 $x_1 + x_2 + x_3 = 6$, $x_1 + 2x_2 + 3x_3 = 10$, $x_1 + 2x_2 + \lambda x_3 = \mu$ over the rational field has a) no solution b) a unique solution c) an infinite number of solutions.

- 18. a) If $T \in A(V)$ is skew-Hermitian, prove that all of its eigenvalues are pure imaginaries.
 - b)Prove that the eigenvalues of a unitary transformation are all of absolute value 1.

PART C

ANSWERANY TWO QUESTIONS

 $(2 \times 20 = 40 marks)$

- 19. a) Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = (0)$.
 - b) If *V* and *W* are two *n*-dimensional vector spaces over *F*. Then prove that any isomorphism *T* of *V* onto *W* maps a basis of *V* onto a basis of *W*.
- 20. If W_1 and W_1 are subspaces of a finite dimensional vector space V, prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.
- 21. State and prove Gram-Schmidt orthonormalization process.
- 22. a) Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
 - b) Prove that the linear transformation *T* on *V* is unitary if and only if it takes an orthonormal basis of *V* onto an orthonormal basis of *V*.
