LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION - **MATHEMATICS**

FIFTHSEMESTER - APRIL 2017

MT 5505- REAL ANALYSIS

Date: 22-04-2017 Dept. No. Max.: 100 Marks

01:00-04:00

PART-A

ANSWER ALL THE QUESTIONS

 $(10 \times 2 = 20)$

- 1. Write the triangle inequality.
- 2. Define countable and uncountable sets.
- 3. What is a discrete metric space.
- 4. Define Interior point.
- 5. Define Homeomorphism.
- 6. Give an example of a continuous function which is not uniformly continuous.
- 7. Define local minimum and local maximum of a function at a point.
- 8. State Rolle's theorem.
- 9. Define bounded variation.
- 10. State linearity property of Riemann Stielties integral-

PART-B

ANSWER ANY FIVE QUESTIONS

 $(5 \times 8 = 40)$

- 11. Show that e is irrational.
- 12. Prove that the countable union of countable sets is countable.
- 13. Let Y be a subspace of a metric space (X, d). Prove that a subset A of Y is open in Y iff $A = Y \cap G$ for some set G open in X.
- 14. Prove that the continuous image of a compact metric space is compact.
- 15. Let $f:(X,d_1) \to (Y,d_2)$ be uniformly continuous on X. If $\{x_n\}$ is a Cauchy sequence in X. Prove that $\{f(x_n)\}$ is a Cauchy sequence in Y.
- 16. State and prove Lagrange's mean value theorem .
- 17. If 'f' is monotonic on [a,b], then prove that the set of discontinuous functions of 'f' is countable.
- 18. State and prove the formula for Integration by parts.

PART-C

ANSWER ANY TWO QUESTIONS

(2x 20 = 40)

- 19. (a) State and prove Cauchy Schwarz Inequality.
 - (b) Prove that **R** is uncountable.
- 20. (a) Prove that the Euclidean space \Re^k is complete.
- (b) Every compact subset of a metric space is complete.
 - 21. State and prove Bolzano theorem and deduce Intermediate value theorem.
 - 22. (a) State and prove Taylor's formula with remainder.
- (b) Suppose (i) $f \in R(\alpha)$ on [a,b], (ii) α is differentiable on [a,b] and (iii) α^1 is continuous on
 - [a, b]. Prove that the Riemann integral $\int_{a}^{b} f \alpha' dx$ exists and $\int_{a}^{b} f d\alpha = \int_{a}^{b} f \alpha' dx$.
