LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTHSEMESTER - APRIL 2017

MT 5509- ALGEBRAIC STRUCTURE - II

Date: 28-04-2017 Dept. No. Max.: 100 Marks

01:00-04:00

PART A

ANSWERALL THE QUESTIONS

(10 * 2 = 20 marks)

1. If V is a vector space over F then show that (-a)v = a(-v) = -(av) for $a \in F, v \in V$.

- 2. Express the vector (1,-2,5) as a linear combination of the vectors (1,1,1),(1,2,3) and(2,-1,1) in \mathbb{R}^3 where \mathbb{R} is the field of real numbers.
- 3. Prove that the vectors (1,0,0), (1,1,0) and (1,1,1) form a basis of \mathbb{R}^3 , where \mathbb{R} is the field of real numbers.
- 4. Define rank and nullity of a vector space homomorphism $T: U \to V$.
- 5. Let R^3 be the inner product over R under standard inner product. Find the norm of (3,0,4).
- 6. Let $T \in A(v)$ and $\lambda \in F$. Then prove that λ is an eigenvalue of T if and only if $\lambda I T$ is singular.
- 7. Define trace of a matrix and give an example.
- 8. If A is any square matrix, prove that $A + \hat{A}^t$ is symmetric and $A A^t$ is a skew-symetric.
- 9. Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 2 & 3 & 1 \end{pmatrix}$ over the field of rational numbers.
- 10. If $T \in A(V)$ is Hermitian, then prove that all its eigenvalues are real.

PART B

ANSWERANY FIVE QUESTIONS

(5*8=40 marks)

- 11. Prove that the union of two subspaces of a vector spaces V over F is a subspace of V if and only if one is contained in the other.
- 12. If S and T are subsets of a vector space V over F, then prove the following:
 - i) S is subspace of V if and only if L(S) = S.
 - ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
- 13. Let V be a vector space and suppose that one basis has n elements and another basis has m elements . Then prove that m = n.
- 14. If A and B are subspaces of a vector space V over F, prove that $(A+B)/B \cong A/A \cap B$.
- 15. Apply the Gram-Schmidt orthonormalization process to obtain an orthonormal basis for the subspace of R^4 generated by the vectors (1,1,0,1), (1,-2,0,0), and (1,0,-1,2).
- 16. If $\lambda \in F$ is an eigenvalue of $T \in A(V)$, then prove that for any polynomial $f(x) \in F[x]$, $f(\lambda)$ is an eigenvalue of f(T).
- 17. Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
- 18. Investigate for what values of λ , μ the system of equations $x_1 + x_2 + x_3 = 6$, $x_1 + 2x_2 + 3x_3 = 10$, $x_1 + 2x_2 + \lambda x_3 = \mu$ over the rational field has a) no solution b) a unique solution c) an infinite number of solutions.

PART C

ANSWERANY TWO QUESTIONS

(2 * 20 = 40 marks)

- 19. a) Prove that the vector space V over F is a direct sum of two of its subspaces W_1 and W_2 if and only if $V = W_1 + W_2$ and $W_1 \cap W_2 = (0)$.
 - b) If V is a vector space of finite dimension and is the direct sum of its subspaces of U and W then prove that $\dim V = \dim U + \dim W$. (10+10)
- 20. a) If V is a vector space of dimension *n*then prove that
 - i) any n + 1 vectors in V are linearly dependent.
 - ii) Any set of *n* linearly independent vectors V is a basis of V.
 - b) If U and V are vector spaces over F, and if T is a homomorphism of U onto V with kernel W, then prove that $U/W \cong V$.
- 21. a) If u, v are any two vectors in V then prove that $||u + v|| \le ||u|| + ||v||$.
 - b) Prove that $T \in A(V)$ is singular if and only if there exists an element $v \neq 0$ in V such that T(V) = 0.
- 22. a) If $A, B \in F_n$ and if $\lambda \in F$, then prove that
 - i) $(\lambda A)^t = \lambda A^t$
 - ii) $(A^t)^t = A$
 - iii) $(A+B)^t = A^t + B^t$
 - iv) $(AB)^t = B^t A^t$
 - b) Prove that the eigenvalues of a unitary transformations are all of its absolute value 1.
