LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION - **MATHEMATICS**

FOURTHSEMESTER - APRIL 2018

16UMT4ES02- FUZZY SETS AND APPLICATIONS

Date: 23-04-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

Part A: Answer all the questions and each question carries 2 marks.

 $10 \times 2 = 20$

- 1. Define fuzzy set and give an example.
- 2. Define anti-symmetry and perfect anti symmetry for a fuzzy relation.
- 3. For the given two sets, find the generalized relative hamming distance:

$$A = \{(x_1/1), (x_2/0.8), (x_3/0.2), (x_4/.8), (x_5/0.6), (x_6/0.3), (x_7/0.5)\}$$

$$B = \{(x_1/0.8), (x_2/0.3), (x_3/0.6), (x_4/0.5), (x_5/0.4), (x_6/0.7), (x_7/0.8)\}$$

4. Explain ordinary subset of level α for the following set

$$A = \{(x_1/0), (x_2/0.3), (x_3/0.7), (x_4/1), (x_5/0), (x_6/0.2), (x_7/0.6)\}$$

- 5. Explain the formula or method to assign values for causal relation between two attributes.
- 6. Find the disjunctive sum for the following two fuzzy relations:

\tilde{R}_1	<i>y</i> 1	<i>y</i> ₂
x_1	0,2	0,3
<i>x</i> ₂	0,3	0,8

R ₂	<i>Z.1</i>	<i>Z</i> .2
<i>y</i> 1	1	0,2
<i>y</i> ₂	0,4	1

- 7. Define ordinary relation closest to a fuzzy relation and give an example.
- 8. What is a limit cycle and a fixed point.
- 9. Explain the similarities between a neuron and synoptic matrix.
- 10. What is difference between FCM model and FRM model.

Part B: Answer any FIVE questions and each question carries 8 marks.

 $5 \times 8 = 40$

- 11. Explain projection with an example and when does it become a normal projection.
- 12. Find the disjunctive sum of the following two fuzzy subsets.

$$\tilde{A} = \{(x_1/1), (x_2/0.8), (x_3/0.2), (x_4/.8), (x_5/0.6), (x_6/0.3), (x_7/0.5)\}$$

$$B = \{(x_1/0.8), (x_2/0.3), (x_3/0.6), (x_4/0.5), (x_5/0.4), (x_6/0.7), (x_7/0.8)\}$$

13. Explain strongest path in a fuzzy graph with an example.

14. Find the order, size, degree and complement for the following graph.

- 15. Considering fuzzy similitude relation \mathcal{R} , and choosing three quantities a, b and c as the following $a=\mu_{\mathcal{R}}(x,y)=\mu_{\mathcal{R}}(y,x); \ b=\mu_{\mathcal{R}}(y,z)=\mu_{\mathcal{R}}(z,y); \ c=\mu_{\mathcal{R}}(z,x)=\mu_{\mathcal{R}}(x,z);$ prove that $c\geq a=b$ or $a\geq b=c$ or $b\geq c=a$.
- 16. Explain various types of fuzzy numbers with an example.
- 17. Explain pentagonal fuzzy number with an example. Give a detailed account of operation on pentagonal fuzzy numbers.
- 18. The result at the end of a fuzzy model analysis is absolutely unsuitable as a solution for the problem analyzed. What would have gone wrong? Explain in detail.

Part C: Answer any TWO questions and each question carries 20 marks.

 $2 \times 20 = 40$

19. (i) Draw the vector lattice of fuzzy subsets for $E = \{x_1, x_2, x_3\}$ and $M = \{0, \frac{1}{2}, 1\}$

Let $p_i, m_i, n_i \in R^+, i = 1, 2, 3..., k$ then prove that

(ii)
$$(p_i \le m_i + n_i, i = 1, 2, 3..., k) \Rightarrow \sqrt{\sum_{i=1}^k p_i^2} \le \sqrt{\sum_{i=1}^k m_i^2} + \sqrt{\sum_{i=1}^k n_i^2}$$

20. Let $A = \{(x_1/1), (x_2/0.8), (x_3/0.2), (x_4/.8), (x_5/0.6), (x_6/0.3), (x_7/0.5)\}$

$$\underline{B} = \{(x_1/0.8), (x_2/0.3), (x_3/0.6), (x_4/0.5), (x_5/0.4), (x_6/0.7), (x_7/0.8)\}$$
 and

$$C = \{(x_1/0), (x_2/0.5), (x_3/0.2), (x_4/0.7), (x_5/0.6), (x_6/0.9), (x_7/0.1)\}.$$
 Calculate

$$i)(\underline{A} \cup \underline{B}) \cap \underline{C} \quad ii)(\underline{A} \cap \underline{B}) \cup \underline{C} \quad iii)\overline{(\underline{A} \cap \underline{B})} \cup \underline{C} \quad iv)\underline{A} \bullet \underline{B} \bullet \underline{C} \quad v)\underline{A} + \underline{B} + \underline{C}$$

21. Find $\mathbb{R}_3 \circ \mathbb{R}_2 \circ \mathbb{R}_1$, where o is the max-min composition.

R_1	<i>y</i> 1	<i>y</i> ₂	у 3	<i>y</i> ₄	y 5
x_1	0,2	0,3	0,8	0,6	0,1
<i>x</i> ₂	0,3	0,8	0,6	0,6	1
Х3	0,2	1	0,4	0,1	0

R_2	<i>Z.1</i>	<i>Z</i> .2	<i>Z.3</i>	Z.4
<i>y</i> 1	1	0,2	0,3	0,4
y 2	0,4	1	0,1	0,2
у 3	0,3	0,4	1	0,1
<i>y</i> ₄	0,2	0,3	0,4	1
y 5	0,1	0,2	0,3	0,4

R_3	t_1	t_2	<i>t</i> ₃	t_4	<i>t</i> ₅
<i>Z.1</i>	0,9	0	0,3	0,4	0,5
<i>Z</i> .2	0,9	0,6	0,4	0,7	0,6
<i>Z3</i>	0	0,8	0,9	0,3	0,7
<i>Z</i> ,4	0,3	1	0,1	0,4	1

21. Using any fuzzy model, analyze any social/medical/environmental/educational/ economic issue in detail and interpret your findings.
