LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION -**MATHEMATICS**

FOURTH SEMESTER - APRIL 2018

16UMT4MC01- ABSTRACT ALGEBRA

Date: 20-04-2018	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00	·	

SECTION – A

Answer ALL questions

 $(10 \times 2 = 20)$

- 1. If $\sigma: S \to T$ and $\phi: T \to U$ are one to one mappings, show that $\phi \circ \sigma$ is also is an one to one mapping.
- 2. Show that if every element of a group G is its own inverse, then G is abelian.
- 3. Show that the intersection of two normal subgroups of G is also a normal subgroup of G.
- 4. Define quotient group.
- 5. Let G be the group of all integers with operation addition. Is the mapping h:G \rightarrow G defined by h(x) = x+1 for all x in G, a group homomorphism?
- 6. Define inner automorphism of a group.
- 7. When do you say that an integral domain is of finite characteristic?
- 8. Show that kernel of a ring homomorphism is an ideal.
- 9. Find all units of J[i].
- 10. Give an example of a Euclidean ring.

SECTION – B

Answer any FIVE questions

 $(5 \times 8 = 40)$

- 11. If G is group of even order, prove that it has an element $a \neq e$ satisfying $a^2 = e$.
- 12. Show that any group of prime order is cyclic.
- 13. Show that a subgroup N of a group G is a normal subgroup of G if and only if the product of two right cosets of N in G is again a right coset of N in G.
- 14. If G is a group, show that the set of all automorphisms $\mathcal{A}(G)$ of G is also a group.
- 15. Show that the alternating group A_n is a normal subgroup of the symmetric group S_n of index two.
- 16. State and prove Cayley's theorem.

- 17. Let R be the ring of all real valued continuous functions on [0,1]. Show that M={f(x) ϵ R : f($\frac{1}{2}$)= 0 } is a maximal ideal of R.
- 18. Let R be a Euclidean ring. Show that any two elements a and b in R have a greatest common divisor d and d = $\lambda a + \mu b$ for μ, λ in R.

SECTION - C

Answer any TWO questions

 $(2\times20=40)$

- 19 (a) Show that any positive integer a >1 can be factored in a unique way as product of prime numbers.
 - (b) If H and K are finite subgroups of a group G, show that $o(HK) = \frac{o(H)o(K)}{o(H\cap K)}$.
- 20 (a) If φ is homomorphism of a group G onto G', N' is a normal subgroup of G' and N= { $x \in G: \varphi(x) \in N$ '}, show that $G/N \approx G$ '/N'.
 - (b) State and prove Lagrange's theorem.
- 21 (a) Prove that any field is an integral domain.
 - (b) If U is an ideal of a ring R show that R/U is also a ring and is a homeomorphic image of R.
- 22 (a) Let A be an ideal of a Euclidean ring R. Show that there exists an element a_0 in A such that A consists exactly of all a_0x as x ranges over R.
 - (b) Show that J[i] is a Euclidean ring.
