LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - APRIL 2018

7/16PMT1MC05- PROBABILITY THEORY AND STOCHASTIC PROCESS

Date: 02-05-2018	Dept. No.	Max.: 100 Marks	
Time: 00:00 10:00			

Answer ALL the questions. Each question carries equal marks.

1. (a) A random variable X has the following probability function:

X	0	1	2	3	4	5	6	7
P(x)	0	k	2k	2k	3k	k^2	$2k^{2}$	$7k^2 + k$

(i) Find k, (ii) Evaluate P(X < 6), $P(X \ge 6)$, and P(0 < X < 5) (iii) If $P(X \le a) > \frac{1}{2}$, find the minimum value of a.

OR

(b) With usual notations prove that $-1 \le \gamma_{XY} \le 1$.

(5)

(c) Let (X, Y) be a two dimensional random variable uniformly distributed over the triangular region bounded by y = 0, x = 3 and $y = \frac{4}{3}x$. Obtain the correlation coefficient between X and Y.

OR

(d) Obtain the Correlation coefficient for the following data:

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

(15)

2. (a) State and prove Chebychev's inequality.

OR

- (b) Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that $P(|X-7| \ge$
- 3) $\leq \frac{35}{54}$. Compare this with the actual probability.

(5

(c) State and prove the necessary and sufficient condition for the weak law of large numbers.

OR

(d) State and prove two Borel-Cantelli Lemmas.

(15)

3. (a) State and prove invariance property of Consistent Estimators.

)R

(b) If T_1 and T_2 are two unbiased estimators of $\gamma(\theta)$, having the same variance and ρ is the correlation between them, then show that $\rho \ge 2e - 1$, where e is the efficiency of each estimator.

(5)

(c) A minimum variance unbiased (M. V. U) estimator is unique in the sense that if T_1 and T_2 are M.

V. U estimators for $\gamma(\theta)$ then prove that $T_1 = T_2$, almost surely.

(d) (i) If a sufficient estimator exists then prove that it is a function of Maximum Likelihood Estimator.

(ii) Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n. Also find its variance. (8 + 7)

4. (a) Explain Critical region and two types of Errors.

OR

- (b) If $x \ge 1$, is the critical region for testing H_0 : $\theta = 2$ against the alternative $\theta = 1$, on the basis of the single observation from the population $f(x, \theta) = \theta e^{-\theta x}$, $0 \le x < \infty$, obtain the values of type I and type II errors.
- (c) State and prove Neyman-Pearson Lemma.

OR

(d) Given the frequency function $f(x, \theta) = \begin{cases} \frac{1}{\theta} & 0 < x < \infty, \theta > 0 \\ 0 & \text{elsewhere} \end{cases}$ and what you are testing the null elsewhere

hypothesis H_0 : $\theta = 1$ against H_1 : $\theta = 2$, by means of a single observed value of x, what would be the sizes of the type I and type II errors, if you choose the interval (i) $0.5 \le x$, (ii) $1 \le x \le 1.5$ as the critical region? Also obtain the power function of the test.

- (e) Write down the advantages and drawbacks of non-parametric tests. (8 + 7)
- 5. (a) Write a short note on classification of stochastic process.

OR

(b) Describe the procedure used in median test.

(5)

(c) Prove that a homogeneous Markov chain $\{X_n\}$ satisfies the relation

 $P_{ij}^{(n+m)} =$

 $\sum_k P_{ik}^{(n)} P_{kj}^{(m)}$ for every $n,m \geq 0$ provided we define $p_{ij}^{(0)} = \delta_{ij}$,

where $\delta_{ij} = \begin{cases} 1 & if i = j \\ 0 & if i \neq j \end{cases}$

OR

(e) Let P be the transition probability matrix of a homogeneous finite Markov chain with elements $p_{ij}(i,j=0,1,2,...,k-1)$. Then prove that the n-step transition probabilities $p_{ij}^{(n)}$ are obtained as the elements of the matrix P^n .

\$\$\$\$\$\$\$\$\$