LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

SECONDSEMESTER – APRIL 2018

17/16PMT2MC02- MEASURE THEORY AND INTEGRATION

	Date: 19-04-2018 Dept. No. Max. : 100 Marks Prime: 01:00-04:00	
Aı	Answer ALL the questions. Each question carries equal marks.	
1.	. a) Let E_1 , E_2 be two measurable sets with $E_1 \supseteq E_2$. Prove that $E_1 - E_2$ is measurable and its measurable $m(E_1) - m(E_2)$. (5)	sure is
	OR b) Show that if f is measurable, then $\{x: f(x) = \alpha\}$ is measurable for each extended real number of (5)	α.
	c) (i) Construct a non-measurable set. (ii) If $F \in \mathcal{M}$, the class of Lebesgue measurable setsand $m^*(F \triangle G) = 0$, then prove that $G \in \mathcal{M}$ (11 + 4)	L.
	OR d) Show that every Borel set is measurable but the converse is not true. (15)	
2	2. a) Let f be a non-negative measurable function. Prove that there exists a sequence $\{\varphi_n\}$ of measur simple functions such that for each x , $\varphi_n(x) \uparrow f(x)$. (5) OR	rable
	b) Evaluate $\int_0^1 \left(\frac{\log x}{1-x}\right)^2 dx$. (5)	
	c) (i) State and prove Lebesgue Dominated convergence theorem. (ii) Show that if $\alpha > 1$, $\int_0^1 \frac{x \sin x}{1 + (nx)^{\alpha}} dx = \circ (n^{-1}) as \ n \to \infty$. (10 + 5)	
	d) Prove that Riemann integrability implies Lebesgueintegrability. Is the converse true? Justify. (15)	
3.	a. a) Show that every algebra is a ring and every σ -algebra is a σ -ring but the converse is not true. (5)	
	OR	
	b) Let $[X, S, \mu]$ be a measure space and fbe a non-negative measure function. Prove that $\varphi(E) = \int_{\mathbb{R}^n} f(x) dx$	
	$\int_E f d\mu$ is a measure on the measurable space $[X, S]$. Also if $\int f d\mu < \infty$, prove that for all ϵ	> 0
	there exists $\delta > 0$ such that $A \in S$ and $\mu(A) < \delta$ then $\varphi(A) < \epsilon$. (5)	
	c) (i) Let μ^* be the outer measure on $\mathcal{H}(\Re)$ defined by μ on a ring \Re . Prove that the class of μ^* -	
	measurable sets S^* contains the σ-ring generated by \Re . (ii) If μ is a σ-finite measure on a ring \Re then prove that it has an unique extension to the	σ-
	ring $\mathcal{S}(\Re)$. (6 + 9)	O
	OR	
	d) If μ is a measure on a σ -ring \mathcal{S} then prove that the class $\bar{\mathcal{S}}$ of sets of the form $E\Delta N$ for any s such that $E \in \mathcal{S}$ while N is contained in some set in \mathcal{S} of zero measure is σ -ring. Also prove that function $\bar{\mu}$ defined by $\bar{\mu}(E\Delta N) = \mu(E)$ is a complete measure on $\bar{\mathcal{S}}$.	
	(15)	

4. a) Prove that every convex function on an open interval is continuous. (5)

OR

- b) Let $f_n \to f$ almost uniformly , then prove the following: (i) $f_n \to f$ in measure
 - (ii) $f_n \to f$ in almost everywhere.

(3 + 2)

c) (i) State and prove Holder's inequality. When will equality occur?

(ii) Establish the inequality $\left| \int_0^{\pi} x^{-\frac{1}{4}} sinx dx \right| \le \pi^{3/4}$.

(10 + 5)

- d) (i) State and prove completeness theorem for convergence in measure.
 - (ii) Let $\{f_n\}$ be a sequence of non negative measurable functions and let f be a measurable function such that $f_n \to f$ in measure then prove that $\int f d\mu \le \liminf \int f_n d\mu$. (8 + 7)
- 5. a) Define a positive and null set with respect to the signed measure v on [X, S] and prove that a countable union of positive sets with respect to a signed measure v is a positive set.(5)

OR

- b) Let μ , λ , ν are σ -finite signedmeasures on [X, S] such that, $\nu \ll \mu$, $\mu \ll \lambda$ then show that $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} [\lambda]$. (5)
- c) State and prove Hahn decomposition theorem. Give an example showing that a Hahn decomposition is not unique. (15)

OR

d) State and prove Radon-Nikodym theorem.

(15)

\$\$\$\$\$\$\$\$\$