

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION - **CHEMISTRY**

FIRSTSEMESTER - APRIL 2018

17/16UMT1AL03- MATHEMATICS FOR CHEMISTRY - I

Date: 30-04-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

ECTION-A

Answer ALL the questions

 $(10 \times 2 = 20)$

- 1. Find $\frac{d}{dx}(\log_e(4x+5))$.
- 2. Show that $\frac{d}{dx}(\cosh x) = \sinh x$.
- 3. Evaluate $\int x^5 dx$.
- 4. Evaluate $\int \frac{xdx}{6x^2+5}$.
- 5. Prove that $cosh^2x sinh^2x = 1$.
- 6. State De Moivre's theorem.
- 7. State any two properties of normal distribution.
- 8. Write down the formula to find the probability in Poisson distribution.
- 9. Write down the series expansion of $log_e(1+x)$, where -1 < x < 1.
- 10. Write the Cauchy's root test for the convergence of a series of positive real numbers.

SECTION-B

Answer any FIVE questions

 $(5 \times 8=40)$

11. Prove that
$$\int_0^{\pi/2} \frac{(\sin x)^{3/2}}{(\sin x)^{3/2} + (\cos x)^{3/2}} dx = \frac{\pi}{4}.$$

- 12. Test the convergence of the series $\frac{1.2}{3.4.5} + \frac{2.3}{4.5.6} + \frac{3.4}{5.6.7} + \cdots$
- 13. Find the maxima and minima of the function $\frac{\log x}{x}$, for positive x.
- 14. Show that $\cosh^{-1}x = \log_e (x + \sqrt{(x^2 1)})$.

15. Show that
$$\frac{e+1}{e-1} = \frac{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \cdots}{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots}$$

16. Express $\cos 5\theta$ in terms of $\cos \theta$.

17. Find the mean and standard deviation for the following table giving the age distribution of 542 students.

Age (in years)	20-30	30-40	40-50	50-60	60-70	70-80	80-90
No. of students	3	61	132	153	140	51	2

18. The ranks of some 16 students in Mathematics and Chemistry are as follows:

Two numbers within brackets denote the ranks of the students in Mathematics and Chemistry.

$$(1, 1), (2,10), (3,3), (4,4), (5,5), (6,7), (7,2), (8,6),$$

$$(9,8)$$
, $(10,11)$, $(11,15)$, $(12,9)$, $(13,14)$, $(14,12)$, $(15,16)$, $(16,13)$.

Calculate the rank correlation coefficient for proficiencies of this group in Mathematics and Chemistry.

SECTION-C

Answer Any TWO questions

 $(2 \times 20=40)$

19. a) Find the maxima and minima of the function $f(x) = 2x^3 - 3x^2 - 36x + 10$.

b) If
$$u = tan^{-1} \left[\frac{x^3 + y^3}{x - y} \right]$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$. (12+8)

20. a) Evaluate $\int \frac{(3x+7)}{2x^2+3x-2} dx$.

b) Show that
$$\int_0^{\pi/4} [\log(1 + \tan \theta)] d\theta = \frac{\pi}{8} \log 2.$$
 (12+8)

21. a) Show that $1 + \frac{2^4}{2!} + \frac{3^4}{3!} + \frac{4^4}{4!} + \dots = 15e$.

b) Express
$$f(x) = \frac{\pi - x}{2}$$
 as a Fourier series to be valid in the interval $(0, 2\pi)$. (10+10)

22. For the following data,

Х	65	66	67	67	68	69	70	72
Υ	67	68	65	68	72	72	69	71

a) Calculate the coefficient of correlation.

b) Obtain the equations of two lines of regression. (10+10)
