LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION -MATHEMATICS

FIRST SEMESTER – APRIL 2018

Z.	17/16PMT1MC03-	ORDINARY DIFFERENTIAL EQUA	ATIONS	
	Date: 28-04-2018 Dept. Time: 09:00-12:00	No.	Max. : 100 Marks	
4ı	nswer all questions. Each question car	ries 20 marks.		
1. (a) Determine whether the given sets of functions are linearly dependent or ind (i) $\{e^x, e^{-x}\}$, (ii) $\{1+x, 1-x, 1-3x\}$. (5)			pendent.	
		(OR)		
	(b) State and prove Abel's formula.		(5)	
	(c) Usingthe method of variation of pa	rameters, solve $x'''(t) - x'(t) = e^t$. (OR)	(15)	
		the second order linear homogenous dif	fferential equation with	
	constant coefficients.		(15)	
2.	. (a) State and prove Rodrigue's formula		(5)	
	(b) With usual notations prove that (i)	(OR) $P(1) = 1 \text{ and (ii) } P'(1) = I(1 \pm 1)/2$	(5)	
	(b) With usual notations, prove that (i) $P_l(1) = 1$, and (ii) $P'_l(1) = l(l+1)/2$			
	(c) Solve $2x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$ by Frob	enius method.	(15)	
		(OR)		
	(d) Derive the orthogonality properties		(15)	
3. (a) Obtain the generating function			(5)	
	(h) When <i>n</i> is a non-zero integer provi	(\mathbf{OR}) ethat $I = (r) = (-1)^n I = (r)$	(5)	
	When <i>n</i> is a non-zero integer, provethat $J_{-n}(x) = (-1)^n J_n(x)$. (5) Explicitly Let $J_n(x)$ be the Bessel's function of first kind of order nand $Y_n(x) = \frac{\cos n\pi J_n(x) - J_{-n}(x)}{\sin n\pi}$. Prove the			
	Sintel			
	the two independent solutions of values of n .	the Bessel's equation may be taken to be	f(x) and $f(x)$ for all $f(x)$	
	_	(OR)		
	(d) Solve: $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y$	$=0, n\geq 0.$	(15)	
4.	. (a) Prove that all the eigenvalues of St	rum-Liouville problem are real.	(5)	
		(OR)		
	(b) State and prove Grownwall inequal	lity.	(5)	
	(c) State and prove Picard's theorem for	or initial value problem.	(15)	
		(OR)		
	(d) Prove that $x(t)$ is a solution of the equation $L[x(t)] + f(t) = 0, a \le t \le b$ if and only if			
	$x(t) = \int_a^b G(t,s)f(s) ds$ where $G(t,s)$) is the Green's function.	(15)	
5.	. (a) Explain asymptotically stable solut	ion by an example.	(5)	
		(OR)		
	(b) Define an autonomous system and state the stability behaviours of the system.			
	(c) Discuss the stability of linear system $x' = Ax$ using Lyapunov's function.		(15)	
	(d) State and 11 C 1	(OR)		
	(a) State and prove the two fundar	mental theorems on the stability of no		
			(15)	