LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

[******]

FIRST SEMESTER - APRIL 2018

7/16UMT1MC02- ANALYTICAL GEOMETRY OF 2D, TRIG. MATRICES

Date: 26-04-2018 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

PART - A

Answer ALL questions:

 $(10 \times 2 = 20)$

- 1. Find $\lim_{x\to 0} \frac{\sin x}{x}$.
- 2. Write the binomial expansion of $(\cos \theta + i \sin \theta)^5$.
- 3. Prove that sin(ix) = i sinh x.
- 4. Show that $\cosh^2 x \sinh^2 x = 1$
- 5. Find the eigen values of the matrix $A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$.
- 6. State Cayley- Hamilton theorem.
- 7. Write the polar of any point (x_1, y_1) and the pole of the line Ax + By + C = 0 with respect
- to the parabola $y^2 = 4ax$
- 8. Define conjugate diameters of the ellipse.
- 9. Show that the sum of the squares of two conjugate semi diameters of an ellipse is constant.
- 10. Write the polar equation of a straight line.

PART - B

Answer any FIVE questions:

(5 X8 = 40)

- 11. Expand $\sin^3 \theta \cos^5 \theta$ in terms of multiples of θ .
- 12. If $\frac{\tan \theta}{\theta} = \frac{2524}{2523}$ prove that $\theta = 1^{\circ}58$ 'approximately.
- 13. Prove that $\sinh^{-1} x = \log_e \left(x + \sqrt{x^2 + 1} \right)$
- 14. Separate into real and imaginary parts $tan^{-1}(x+iy)$
- 15. Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$
- 16. Find the locus of the poles all tangents to the parabola $y^2 = 4ax$ with respect to the parabola $y^2 = 4bx$.
- 17. Find the asymptotes of the hyperbola $3x^2 5xy 2y^2 + 17x + y + 14 = 0$.
- 18. Find the locus of the foot of the perpendiculars drawn from the pole to the tangents to the circle $r = 2a \cos \theta$.

PART-C

Answer Any TWO Questions:

 $(2 \times 20 = 40)$

19. a. Expand $\cos 8\theta$ in terms of sines of multiples of θ

b. Evaluate
$$\lim_{x\to 0} \frac{\tan 2x - 2\tan x}{x^3}$$
. (10 + 10)

20. a.Ifcos $(x + iy) = \cos \alpha + i\sin \alpha$, prove that $\cos 2x + \cosh 2y = 2$

b. Reduce
$$(x+i\beta)^{x+iy}$$
 to the form $A+iB$. (10 + 10)

- 21. Diagonalize the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$
- 22. a. If e, e₁ are the eccentricities of a hyperbola and its conjugate show that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$

b. Trace the curve
$$\frac{12}{r} = 4 + \sqrt{3}\cos\theta + \sin\theta (10 + 10)$$
