LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIFTH SEMESTER - APRIL 2018

MT 5505- REAL ANALYSIS

Date: 30-04-2018 Time: 09:00-12:00	Dept. No.			Max.: 100 Marks
	\$	SECTION- A		
Answer all the questions:				2x10=20
1. State the principle of mathematical induction.				
2. State the triangle inequality	y.			
3. Define a metric space.				
4. Define a complete metricspace with an example.				
5. State intermediate value th	eorem.			
6. What is a homeomorphism	?			
7. Define a local maximum for a function at a point.				
8. State Lagrange's mean val	ue theorem.			
9. Define a bounded variation of a function.				
10. State the linearity properties of Riemann Steiltjes integral.				
	S	SECTION -B		
Answer any FIVE question	s:			5 X 8= 40
11. Prove that every subset of	of a countable set is	countable.		
12. State and prove Cauchy-S	Schwarz inequality.			
13. Prove that every convergent sequence is Cauchy.				
14. Let (X, d_1) and (Y, d_2) be metric spaces and $f: X \to Y$ be a continuous function on X . If				
X is compact, then prove that	t f(X) is a compact	subset of Y.		

- 15. If $f: X \to Y$ is continuous on X and if X is compact, then prove that f is Uniformly continuous.
- 16. State and prove the intermediate value theorem for derivatives.
- 17. If f is a monotonic function on [a, b], then prove that the set of discontinuities of f is countable.
- 18. State and prove the theorem on Integration by parts.

SECTION -C

Answer any TWO questions:

 $2 \times 20 = 40$

- 19.a) Prove that the set \mathbf{R} is uncountable.
- b) State and prove Minkowski's inequality.
- 20.a) Let Y be a subspace of a metric space (X, d). Then prove that a subset A of Y is open in Y if and only if $A = Y \cap G$ for some set G open in X.
 - b) Prove that the Eulideanspace R^k is complete.
- 21. a) Let (X, d_1) and (Y, d_2) be metric spaces and $f: X \to Y$. If x_0 belongs to X, then prove that f is continuous at x_0 if and only if for every sequence $\{x_n\}$ in X that converges to x_0 , the sequence $\{f(x_n)\}$ converges to $f(x_0)$
- b) If f and g are continuous at x_0 and k is a fixed real number, then prove that (i) kf, (ii) f + g and (iii) fg are continuous at x_0 in X.
- 22. a) State and prove Rolle's theorem.
- b) If $f \in R(\alpha)$ on [a, b] and $f \in R(\beta)$ on [a, b] then prove that for any pair of constants λ and μ the following are true. (i) $f \in R(\lambda \alpha + \mu \beta)$ on [a, b] and

(ii)
$$\int_{a}^{b} f d(\lambda \alpha + \mu \beta) = \lambda \int_{a}^{b} f d\alpha + \mu \int_{a}^{b} f d\beta$$
