

B.Sc. DEGREE EXAMINATION - **PHYSICS**

FIRSTSEMESTER - APRIL 2018

MT 1100- MATHEMATICS FOR PHYSICS

Date: 28-04-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

PART A

Answer ALL the questions.

 $(10 \times 2 = 20)$

- 1. Find the n^{th} derivative of e^{ax} .
- 2. Prove that the polar subnormal of the curve $r = a\theta$ is constant.
- 3. State Cayley-Hamilton theorem.
- 4. Define symmetric and skew symmetric matrices.
- 5. Find $L(\sinh 3t)$.
- 6. Obtain the inverse Laplace transform of $\frac{s}{s^2+4}$.
- 7. Write down the expansion of $\cos n\theta$.
- 8. Prove that $cosh^2x sinh^2x = 1$.
- 9. Define binomial distribution.
- 10. Find the median of the set $A = \{20, 40, 16, 80, 100\}$.

PART B

Answer any FIVE questions.

 $(5 \times 8 = 40)$

- 11. Find y_n where $y = \frac{2x+1}{(2x-1)(2x+3)}$.
- 12. Find the characteristic equation of the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}$ and show that the matrix A satisfies the equation.
- 13. Find $L(te^{-t}\sin t)$.
- 14. Prove that $\frac{\sin 7\theta}{\sin \theta} = 64\cos^6\theta 80\cos^4\theta + 24\cos^2\theta 1$.
- 15. Sum to infinity the series $1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \frac{1+2+2^2+2^3}{4!} + \cdots$
- 16. Write a short note on normal distribution.
- 17. Find $L^{-1}(\frac{s-3}{s^2+4s+13})$.
- 18. If X is a Poisson variate such that P(X = 2) = 9 P(X = 4) + 90 P(X = 6), find the mean of X.

PART C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19. (a) If $y = sin(msin^{-1}x)$, show that $(1 x^2)y_2 xy_1 + m^2y = 0$ and $(1 x^2)y_{n+2} (2n + 1)xy_{n+1} + (m^2 n^2)y_n = 0.$
 - (b) Find the eigenvalues and eigenvectors of the matrix $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$. (10+10)
- 20. (a) Using Laplace transform, solve $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = sint$, $y = \frac{dy}{dt} = 0$ when t = 0.
 - (b) Find the Laplace transform of $f(t) = \begin{cases} 1 & : 0 < t < b \\ -1 & : b < t < 2b \end{cases}$ (10+10)
- 21. (a) Express $\cos 6\theta$ in terms of $\sin \theta$.
 - (b) Prove that $32\sin^4\theta\cos^2\theta = \cos 6\theta 2\cos 4\theta \cos 2\theta + 2$. (10+10)
- 22. (a) Calculate the mean and standard deviation for the following data.

	Class Interval	20 – 25	25 – 30	30 – 35	35 – 40	40 – 45	45 – 50	50 – 55
Fı	requency	170	110	80	45	40	30	25

(b) Sum the series to infinity $\frac{4}{2\cdot 4} + \frac{4\cdot 5}{2\cdot 4\cdot 6} + \frac{4\cdot 5\cdot 6}{2\cdot 4\cdot 6\cdot 8} + \dots$ (10+10)

\$\$\$\$\$\$\$\$\$