LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

THIRD SEMESTER - APRIL 2018

MT 3501- ALGEBRA, CALCULUS AND VECTOR ANALYSIS

Date: 05-05-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART - A

Answer all questions:

 $(10 \times 2 = 20)$

- 1. Evaluate $\int_{0}^{a} \int_{0}^{b} xy(x-y) dy dx$.
- 2. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{7} \theta \cos^{5} \theta d\theta$.
- 3. Solve $x + y \frac{\partial z}{\partial x} = 0$.
- 4. Solve $p = q^2$.
- 5. Prove that $\nabla \times \vec{r} = \vec{0}$ where $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$.
- 6. Find the value of "a" if the vector $\vec{v} = 3x\vec{i} + (x+y)\vec{j} az\vec{k}$ is solenoidal.
- 7. Find $L(t^3 3t^2 + 2)$.
- 8. Find $L(e^{-2t}\cos 3t)$.
- 9. Find the value of $\varphi(600)$.
- 10. State Fermat's theorem.

PART – B

Answer any five questions:

(5 X 8 = 40)

- 11. Evaluate $\iiint xyzdxdydz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.
- 12. Evaluate $\int_{0}^{1} x^{m} \left(\log \frac{1}{x} \right)^{n} dx$.
- 13. Solve p + q = px + qy.

- 14. Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.
- 15. Compute the divergence and curl of the vector $\vec{F} = xyz \hat{i} + 3x^2 y \hat{j} + (xz^2 y^2 z) \hat{k}$ at (1, 2, -1).
- 16.Prove that $\vec{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x 4)\hat{j} + (3xz^2 + 2)\hat{k}$ is irrotational and find its scalar potential.
- 17. Find $L^{-1}\left(\frac{s}{(s+3)^2+4}\right)$.
- 18. Find the number of all divisors of 480. Also find the sum of all the divisors of 480.

PART - C

Answer any two questions:

 $(2 \times 20 = 40)$

- 19.(i)By changing into polar co-ordinates, evaluate the integral $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} (x^2+y^2) dxdy$.
 - (ii) Express $\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$ in terms of Gamma functions and evaluate the integral

$$\int_{0}^{1} x^{5} \left(1 - x^{3}\right)^{10} dx \quad . \tag{10+10}$$

20.(i) Find the general solution of xzp + yzq = xy.

(ii) Solve
$$pxy + pq + qy = yz$$
. (10+10)

- 21.(i) Verify Gauss-Divergence theorem for the function $\vec{F} = 2xz \,\hat{i} + yz \,\hat{j} + z^2 \,\hat{k}$ over the upper half of the sphere $x^2 + y^2 + z^2 = a^2$.
 - (ii) Show that n(n+1)(2n+1) is divisible by 6. (15+5)
- 22.(i) Solve the simultaneous equations $3\frac{dx}{dt} + \frac{dy}{dt} + 2x = 1$ $\frac{dx}{dt} + 4\frac{dy}{dt} + 3y = 0$

given x = 0 = y at t = 0.

(ii) State and prove Wilson's theorem. (10+10)
