LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - APRIL 2018

MT 3503- VECTOR ANALYSIS & ORDINARY DIFF. EQUATIONS

Date: 05-05-2018 Dept. No. Max. : 100 Marks

Time: 01:00-04:00

PART - A

Answer ALL questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Find the unit vector normal to the surface $x^2 + y^2 + 2z^2 = 4$ at the point (1,1,1).
- 2. If $ax^2z^2i^- + xyz^{2-}j xy^{3-}k$ is solenodal, find the value of a.
- 3. If $\overline{F} = x\overline{j} y\overline{i}$, Compute $\int_{C} \overline{F} \cdot d\overline{r}$ along the straight line joining (0,0) and (1,1).
- 4. Define conservative field and scalar potential.
- 5. State Stoke's theorem.
- 6. For any closed surface S, prove that $\iint_{S} curl \overline{F} \cdot \hat{n} ds = 0$.
- 7. Solve: $\frac{1}{x} \frac{dy}{dx} + \frac{y}{x} \tan x = \cos x$.
- 8. Solve: (y-px)(p-1)=p.
- 9. Solve: $(D^3 3D^2 + 4)y = 0$.
- 10. Transform the equation $(2x+3)^2 y'' 2(2x+3)y' + 2y = 6x$ into a linear equation with constant coefficients.

PART - B

Answer any FIVE questions:

 $(5 \times 8 = 40 \text{ marks})$

- 11. Determine $f(\mathbf{r})$ so that the vector f(r) is solenoidal.
- 12. Find ϕ giventhat $\phi(1,1,1) = 3$ and $\nabla \phi = (y + y^2 + z^2)\vec{i} + (x + y + 2xy)\vec{j} + (y + 2zx)\vec{k}$.
- 13. If $\overline{F} = (2x^2 3z)\overline{i} 2xy\overline{j} 4z\overline{k}$, then evaluate $\iiint_V \nabla .\overline{F} dv$, where V is bounded by the planes

$$x = 0$$
, $y = 0$, $z = 0$, and $2x + 2y + z = 4$.

14. Using Green's theorem, evaluate $\int_{c} (y - \sin x) dx + \cos x dy$, where C is the triangle formed by y=0,

$$x = \frac{\pi}{2}, y = \frac{2}{\pi}x.$$

15. Solve:
$$(1-x^2)\frac{dy}{dx} + xy = y^3 \sin x$$
.

- 16. Solve: p(p+y) = x(x+y).
- 17. Solve: $(D^2 + 2D 3)y = e^x \cos x + e^{-2x}$.
- 18. Using variation of parameters, solve $y'' + a^2y = \sec(ax)$.

PART - C

Answer any TWO questions:

 $(2 \times 20 = 40 \text{ marks})$

19. a) If
$$r = x\vec{i} + y\vec{j} + z\vec{k}$$
, prove that div $(grad r^n) = n(n+1)r^{n-2}$.

b) If $\overline{F} = 2y\overline{i} - z\overline{j} + x\overline{k}$, evaluate $\overrightarrow{F}xd\overrightarrow{r}$ along the curve

$$x = \cos t$$
, $y = \sin t$, $z = 2\cos t$ from $t = 0$ to $t = \frac{\pi}{2}$. (10+10)

20. Verify stoke's theorem for $\overline{F} = (2x - y)\overline{i} - yz^2\overline{j} - y^2z\overline{k}$, where S is the upper half of the sphere

$$x^2 + y^2 + z^2 = 1$$
 and C is its boundary. (20)

21. a) Solve:
$$\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$$
.

b) Solve :
$$y = 2px + y^2p^3$$
. (10 +10)

22. a) Solve: $(D^2 - 2D + 1) y = xe^x \sin x$.

b) Solve:
$$(3x+2)^2 y'' + 3(3x+2)y' - 36y = 3x^2 + 4x + 1$$
. (10 +10)
