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PART-A 
ANSWER ALL THE QUESTIONS:        (10x2=20marks) 
 
1. Verify Cauchy-Riemann equations for the function 𝑓(𝑧) = 𝑧3. 

2. Show that 𝑢 = 𝑙𝑜𝑔√𝑥2 + 𝑦2 is harmonic. 

3. Find the points where the mapping 𝑤 = 𝑒𝑧  is conformal. Also find the critical points. 

4. Define a bilinear transformation. 

5. Using Cauchy’s Integral formula, evaluate  
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6. Evaluate 
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where 𝐶 is the circle 1z  . 

7. Find the poles of 
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8. Write Maclaurin’s series expansion of 𝑠𝑖𝑛𝑧. 

9. Find the residue of 
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at its poles. 

10. State Cauchy’s residue theorem. 

 

PART-B 

ANSWER ANY FIVE QUESTIONS:        (5x8=40marks) 
 

11. Prove that ( ) sin cosh cos sinhf z x y i x y  is differentiable at every point. 

12.  If 𝑓(𝑧) is analytic prove that 
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13. Find the bilinear transformation which maps the points 1 2 32, , 2z z i z     onto 

1 2 31, , 1w w i w     respectively. 

14.  State and prove Liouville’s theorem. 



2 

 

 

15. Expand 
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 as a Taylor’s series  

 

(i) about the point 𝑧 = 0.  

(ii) about the point 𝑧 = 1. Determine the region of convergence in each case. 

16. Evaluate 
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 where  𝐶 is |𝑧| = 2 by using residue theorem. 

17.  Evaluate by using Cauchy’s integral formula 
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   where  𝐶 is the circle 

|𝑧 + 1 + 𝑖| = 2 

18. State and prove Rouche’s theorem. 

 

PART-C 

ANSWER ANY TWO QUESTIONS:        (2 x 20=40marks) 
 

19.  a) Derive C.R equations in polar coordinates. 

b) Prove that any bilinear transformation can be expressed as a product of translation,  

rotation, magnification or contraction and inversion.   (12+8) 

20.  a) State and prove Cauchy’s integral theorem. 

b) Evaluate 
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   where 𝐶 is the circle |𝑧| = 3.(12+8) 

 

21.  a) State and prove Laurent’s theorem. 

b) State and prove fundamental theorem of algebra.                (12+8) 

    22. a) State and prove Argument theorem.                                        

b) Using the method of contour integration evaluate 
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