LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - APRIL 2019

16UMT5MC01- REAL ANALYSIS

Date: 15-04-2019	Dept. No.	Max. : 100 Marks

Time: 09:00-12:00

Part-A

Answer ALL the questions.

(10X 2=20)

- 1. Define ordered field.
- 2. Prove that N is unbounded above.
- 3. Define Metric Space.
- 4. Define Open Cover.
- 5. Define complete metric space.
- 6. Define a bounded set.
- 7. If f is differentiable at c then prove that f is continuous at c.
- 8. State Intermediate value theorem for derivatives.
- 9. Define Monotonic functions.
- 10. Define Bounded Variation.

PART-B

Answer any FIVE questions.

(5X 8=40)

- 11. If $e = 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots$, then prove that e is irrational.
- 12. Prove that every subset of a countable set is countable.
- 13. Let $M=R^n$. If $x=(x_1,x_2,...x_n)$ and $y=(y_1,y_2,...y_n)$ are points in R^n , define

$$d(x,y) = \left[\sum_{k=1}^{n} (x_k - y_k)^2\right]^{\frac{1}{2}}$$
. Show that (M, d) is a metric space.

- 14. State and prove Heine Borel theorem.
- 15. Prove that every convergent sequence is Cauchy sequence.
- 16. Prove that every subset of a compact set is compact.
- 17. State and prove Rolle's theorem.
- 18. Prove that if f is monotonic on [a, b], then the set of discontinuities of f is countable.

PART-C

Answer any TWO questions.

(2 X20=40)

- 19. (a) Prove that the set R is uncountable.
 - (b) State and prove Cauchy- Schwarz inequality.

(10 + 10)

- 20.(a) Let (X, d) be a Metric space, then prove that the following
 - (i) The intersection of an arbitrary collection of closed sets in X is closed in X
 - (ii) The intersection of a finite collection of open sets in X is open in X.
 - (b) State and prove Bolzano-Weierstrass theorem for R.

(10 + 10)

- 21. (a) Let f and g be real valued functions defined on a metric space (X,d). If f and g are continuous at $x_0 \in X$, then prove that (i) kf (ii) f+g and (iii) fg are continuous at $x_0 \in X$.
 - (b) State and prove Generalized mean value theorem.

(10 + 10)

- 22. (a) State and prove Taylor's theorem.
 - (b) Let f be functions of bounded variation defined on [a, b] and $c \in (a, b)$. Then prove that f is bounded variation on [a, b] as well as on [a, c] and $V_f[a, b] = V_f[a, c] + V_f[c, b]$.

(10 + 10)

