LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

FIFTH SEMESTER - APRIL 2019

16UMT5MC02-STATICS

Date: 16-04-2019	Dept. No.	Max. : 100 Marks

Time: 09:00-12:00

SECTION – A

Answer ALL questions

 $(10\hat{1} 2 = 20)$

- 1. What is parallelogram of forces?
- 2. Two forces of equal magnitudes acting on a particle are such that the square of the magnitude of the resultant is 3 times the product of the magnitude of the frces. Find the angle between them.
- 3. Define moment of a force.
- 4. What is meant by cone of friction?
- 5. Give an example of a body where the centre of mass is not necessarily a point of the body.
- 6. What is the centre of gravity of a thin uniform rod?
- 7. State Hooke's law.
- 8. When do you say that a body is in neutral equilibrium?
- 9. State intrinsic equation of catenary.
- 10. What is a suspension bridge?

SECTION – B

Answer any FIVE questions.

 $(5 \hat{1} 8 = 40)$

- 11. The resultant of two forces of magnitude p and q acting on a particle has magnitude $(2n+1)\sqrt{p^2+q^2}$ or $(2n-1)\sqrt{p^2+q^2}$ according as the angle between the forces is α or $90^{\circ}-\alpha$. Prove that $tan\alpha=\frac{n-1}{n+1}$.
- 12. State and prove Lami's theorem.
- 13. Find the resultant of two unlike parallel forces with unequal magnitudes.
- 14. A weight W is supported by friction on a plane inclined at an angle α to the horizon. Show that it cannot be moved up the plane by any horizontal force less than W tan 2α .
- 15. Show that the centre of gravity of a uniform triangular lamina coincides with the centre of gravity of three particles of equal weights placed at the mid points of the sides of the triangle.

- 16. Discuss the work done in stretching an elastic string from its natural length I to the length I'.
- 17. A solid sphere rests inside a fixed rough hemispherical bowl of twice its radius. Show that, however large a weight is attached to the highest point of the sphere, the equilibrium is stable.
- 18. A string of length I hangs between two points not in the same vertical line and the tangents at the end points are inclined at an angle α and β with the horizontal. Show that the height of one extremity above the other

is
$$\frac{l\sin\frac{\alpha+\beta}{2}}{\cos\frac{\alpha-\beta}{2}}.$$

SECTION - C

Answer any TWO questions

 $(2\hat{1} 20 = 40)$

- 19. (a) Determine the magnitude and direction of the resultant of two given forces with a common point of application. (10)
 - (b) Two strings AB and AC are knotted at A, where a weight W is attached. If the weight hangs freely and in the position of equilibrium, with BC horizontal, AB: BC: CA = 2:4:3, show that the tensions in the strings are

$$\frac{7W}{2\sqrt{15}}$$
 and $\frac{11W}{4\sqrt{15}}$. (10)

- 20. (a) State and prove Varignon's theorem on moments.
 - (b) Discuss the equilibrium of a particle on a smooth inclined plane acted on an external force.

(10)

(10)

(10)

- 21. (a) Find the centre of gravity of a uniform solid right circular cone. (10)
 - (b) Derive the Cartesian equation of the catenary. (10)
- 22. (a) A rod lies in equilibrium with its ends on two smooth planes inclined at an angle α,β to the horizontal, the planes intersecting in a horizontal line. Show that the inclination of the rod to the horizontal is tan-1 $\left(\frac{\sin{(\alpha \sim \beta)}}{2\sin{\alpha}\sin{\beta}}\right)$. (10)
 - (b) A uniform chain of length l, is to be suspended from two points A and B, is the same horizontal line, so that either terminal tension is n times that at the lowest point. Show that the span AB must be $\frac{1}{\sqrt{n^2-1}}\log(n+\sqrt{n^2-1}).$

