LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

SIXTH SEMESTER - APRIL 2019

16UMT6MC04- GRAPH THEORY

Date: 13-04-2019	Dept. No.	Max.: 100 Marks
------------------	-----------	-----------------

Time: 09:00-12:00

PART - A

Answer ALL questions.

 $(10\hat{1} 2 = 20)$

- 1. State Königsberg bridge problem.
- 2. Give examples of two isomorphic graphs.
- 3. When do you say that a graph is Euler?
- 4. Define Hamiltonian circuit.
- 5. In a graph, which vertex is called a pendent vertex?
- 6. Define spanning tree of a connected graph.
- 7. What is cut- set of a connected graph?
- 8. Define an edge connectivity of a graph.
- 9. Give an example of a non planar graph.
- 10. Define an asymmetric digraph.

PART - B

Answer any FIVE questions

 $(5\hat{1} 8 = 40)$

- 11. What is utility problem and explain how it can be represented by a graph.
- 12. In a connected graph G with exactly 2k odd vertices, show that there exist k edge disjoint sub graphs such that they together contain all edges of G and that each is a unicursal graph.
- 13. Show that a connected graph is an Euler graph if and only if it can be decomposed into circuits.
- 14. Prove that a tree with n vertices has n-1 edges.
- 15. Prove that every circuit has an even number of edges in common with any cut set.
- 16. Show that edge connectivity of a graph G cannot exceed the degree of the vertex with the smallest degree in G and the vertex connectivity of any graph G can never exceed the edge connectivity of a G.
- 17. Show that the complete graph of five vertices is non-planar..
- 18. A graph of n vertices is a complete graph if and only if its chromatic polynomial is $P_n(\lambda) = \lambda \ (\lambda 1) \ (\lambda 2).....(\lambda n + 1).$

<u>PART – C</u>	
Answer any TWO questions.	$(2\hat{1} 20 = 40)$
19. (a) Show that a simple graph with n vertices and k components can have at most	t (n-k)(n-k+1)/2 edges.
	(10)
(b) Show that a connected graph is an Euler graph if and only if all vertices of C	G are of even degree.
	(10)
20. (a) Show that in a complete graph with n vertices there are (n-1)/2 edge disjoint	Hamiltonian circuits,
if n is an odd number 3.	(10)
(b) Show that every tree has either one or two centers.	(10)
21. (a) Prove that a spanning tree of a given weighted connected graph G is a shorte	est spanning tree of G i

(b) Show that with respect to a given spanning tree T, a branch b_i that determines a fundamental cut set S is contained in every fundamental circuit associated with the chords in S, and in no others.

and only if there exists no other spanning tree of G at a distance of one from T whose weight is

(10)

(10)

22. (a) Prove that a connected planar graph with n vertices and e edge has e-n+2 regions. (10)

smaller than that of T.

(b) Show that every tree with two or more vertices is 2- chromatic. (10)
