## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034



### **B.Sc.**DEGREE EXAMINATION - **MATHEMATICS**

### SIXTH SEMESTER - APRIL 2019

### MT 6607- DYNAMICS

| Date: 05-04-2019 | Dept. No. | Max. : 100 Marks |
|------------------|-----------|------------------|
|                  | <u> </u>  |                  |

Time: 09:00-12:00

#### SECTION - A

# **Answer ALL questions**

 $(10 \times 2 = 20)$ 

- 1. State the principles of conservation of linear momentum.
- 2. State Newton's second law of motion.
- 3. Find the time taken by the particle to reach the maximum height in a projectile.
- 4. Define angle of Projection.
- 5. If T is the time of flight of the S.H.M., f its acceleration and v, velocity at any position, show that the expression  $f^2T^2 + 4\pi^2v^2$  is a constant.
- 6. Define epoch.
- 7. Write down the differential equations of the central orbit of p-r co-ordinates.
- 8. Define apse.
- 9. Define moment of inertia.
- 10. What is the moment of inertia of circular ring of radius a about a tangent line.

#### SECTION - B

# **Answer any FIVE questions**

(5x 8=40)

- 11. Show that when masses P and Q are connected by a string over the edge of a table, the tension is the same whether P hangs and Q is on the table or Q hangs and P is on the table.
- 12. A body, sliding down a smooth inclined plane, is observed to cover equal distances, each equal to a, in consecutive intervals of time  $t_1$ ,  $t_2$ . Show that the inclination of plane to the horizon is  $\sin^{-1}\left[\frac{2a(t_1-t_2)}{gt_1t_2(t_1+t_2)}\right]$ .
- 13. State and prove perpendicular axes theorem.
- 14. A particle executing a S.H.M. in a straight line has velocities 8, 7, 4 at three distant one foot from each other. Find the period.
- 15. A particle moves in a simple harmonic motion in a straight line. In the first second, after starting from rest, it travels a distance a and in the next second, it travels a distance b in the same direction. Prove that the amplitude of the motion is  $\frac{2a^2}{3a-b}$ .
- 16. The velocities of a particle along and perpendicular to radius vector are radius radius vector
- 17. Obtain the differential equation of the central orbit.
- 18. Show that the Moment of inertia of a rectangular lamina.

## **SECTION - C**

# **Answer any TWO questions**

 $(2 \times 20 = 40)$ 

- 19. (i) Two particles of masses  $m_1$  and  $m_2$  ( $m_1 > m_2$ ) are connected by means of a light inextensible string passing over a light, smooth fixed pulley. Discuss the motion.
  - (ii) A string passes over a fixed smooth pulley and to one end, there is attached a mass  $m_1$  and to the other a smooth light pulley over which passes another string with masses  $m_2$  and  $m_3$  at the ends. If the system is released from rest. Show that  $m_1$  will not move if  $\frac{4}{m_1} = \frac{1}{m_2} + \frac{1}{m_3}$ .

(10+10)

20. Show that the path of a projectile is a Parabola.

(20)

- 21. (i) Show that the resultant motion of two S.H.M of the same period in the same straight line.
  - (ii) If the law of acceleration is  $5 \sim u^3 + 8 \sim c^2 u^5$  and the particle is projected from an apse at a distance c with a

velocity  $\frac{3\sqrt{c}}{c}$ . Prove that the equation of orbit is  $r = c\cos\frac{2\pi}{3}$ . (10+10)

- 22. (i) State and Prove Parallel axes theorem.
  - (ii) Find the moment of inertia of solid sphere about a tangent line. (10+10)

\*\*\*\*\*