LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016

16PMT1MC01/MT 1815 - LINEAR ALGEBRA

Date: 02-11-2016	Dept. No.	Max. : 100 Marks
Time: 01:00-04:00		

Answer ALL the questions:

I. a. i) Find the minimal polynomial for the matrix

$$A = \begin{pmatrix} 3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5 \end{pmatrix}.$$

(OR) (5)

- ii) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Prove that the following statements are equivalent.
 - 1. c is a characteristic value of T.
 - 2. The operator (*T-cI*) is singular.
 - 3. $\det(T-cI) = 0$.
- b. i) Let T be a linear operator on a finite dimensional space V and $c_1, \ldots c_k$ be the distinct characteristic values of T. Let W_i be the null space of $(T c_i I)$. Prove that the following are equivalent.
 - 1. T is diagonalizable
 - 2. The characteristic polynomial for T is $f = (x c_1)^{d_1} \dots (x c_k)^{d_k}$ and dim $W_i = d_i, i = 1, \dots, k$.
 - 3. dim $W_1 + \dots$ dim $W_k = \text{dim } V$.

$$(OR) (15)$$

- ii) State and prove Cayley Hamilton Theorem.
- II. a. i) Let V be a finite-dimensional vector space. Let $W_1,...,W_K$ be subspaces of V and let $W = W_1 + ... + W_K$. The following are equivalent.
 - a) $W_1,...,W_K$ are independent.
 - b) For each j, $2 \le i \le k$, we have $Wj \cap (W_1 + ... + W_{j-1}) = \{0\}$.

 (OR)
 - ii) Let W be an invariant subspace for T. Then prove that the minimal polynomial for T_w divides the minimal polynomial for T.
 - b. i) State and prove Primary Decomposition theorem.

$$(OR) (15)$$

- ii) Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and if $c_1,...,c_k$ are the distinct characteristic values of T, then prove that there exist linear operators $E_1,...,E_k$ on V such that
 - 1. $T = c_1 E_1 + ... + c_k E_k$ 2. $I = E_1 + ... + E_k$ 3. $E_i E_j = 0, i \neq j$ 4. Each E_i is a projection
 - 5. The range of E_i is the characteristic space for T associated with c_i .
- III. a. i) If $\boldsymbol{\mathcal{B}}$ is an ordered basis for W_i , $1 \le i \le k$, then prove that the sequences $\boldsymbol{\mathcal{B}} = (\boldsymbol{\mathcal{B}}_1 \dots \boldsymbol{\mathcal{B}}_k)$ is an ordered basis for W.

$$(OR) (5)$$

ii) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.

b. i) State and prove cyclic decomposition theorem. (15)

(OR)

- ii) If W is T admissible then, there exists a vector $\alpha \in v$ such that $W \cap Z(\alpha; T) = \{0\}$. (7)
- iii) Let T be a linear operator on a finite-dimensional vector space V. Let p and f be the minimal and characteristic polynomials for T, respectively.
 - (1) p divides f.
 - (2) p and f have the same prime factors, except for multiplicities.
 - (3) If $p = f_1^{r_1} \dots f_k^{r_k}$

In the prime factorization of p, then $f = f_1^{d_1} \dots f_k^{d_k}$ where d_i is the nullity of f_i (T)^{r_i} divided by the degree of f_i .

IV. a. i) Let V be a complex vector space and f be a form on V such that $f(\alpha, \alpha)$ is real for every α , then f is Hermitian. (5)

(OR)

- ii) Let T be a linear operator on a complex finite dimensional inner product space V. Then prove that T is self-adjoint if and only if $(T\alpha/\alpha)$ is real for every α in V.
- b. i) Let V be a finite-dimensional inner product space and f a form on V. Then there is a unique linear operator T on V such that $f(\alpha, \beta) = (T\alpha|\beta)$ for all α, β in V, and the map $f \to T$ is an isomorphism of the space of forms onto L(V, V).
- ii) For any linear operator T on a finite-dimensional inner product space V, there exists a unique linear T^* on V such that $(T\alpha|\beta) = (\alpha|T^*\beta)$ for all α , β in V. (7) (OR)
- iii) Let F be the field of real numbers or the field of complex numbers. Let A be an n x n matrix over F. Show that the function g defined by g (X, Y) = Y* AX is a positive form on the space F^{nx1} if and only if there exists an invertible n x n matrix P with entries in F such that A = P*P.
 - iv) State and prove Principal Axis Theorem. (8)
- V. a. i) Define Quadratic form, Bilinear form, symmetric bilinear form and prove that

 $f(\alpha, \beta) = \frac{1}{4}q(\alpha + \beta) - \frac{1}{4}q(\alpha - \beta).$ (OR)

- ii) Let V be a finite dimensional vector space over a field of characteristic zero and let f be symmetric bilinear form on V. Then prove that there is an ordered basis for V in which f is represented by a diagonal matrix.
- b. i) Let V be an n-dimensional vector space over the field of real numbers, and let f be a symmetric bilinear form on V which has rank r. Then there is and ordered basis $\{\beta_1, \beta_2, \dots, \beta_n\}$ for V in which the matrix of f is diagonal and such that

 $f(\beta_j, \beta_j) = \pm 1, \quad j = 1, \dots, r$. Also show that the number of basis vectors β_j for which $f(\beta_j, \beta_j) = 1$ is independent of the choice of basis. (7)

ii) Let V be a finite-dimensional vector space over the field of complex numbers. Let f be a

symmetric bilinear form on V which has rank r. Then prove that there is an ordered basis $\mathcal{B} = \{\beta_1, \dots, \beta_n\}$ for V such that: (1) the matrix of f in the ordered basis \mathcal{B} is diagonal;

(2) $f(\beta_j, \beta_j) = \begin{cases} 1, & j = 1, ..., r \\ 0, & j > r ... \end{cases}$ (OR)

- iii) Let V and W be the finite dimensional inner product space over the same field having the same dimension. If T is a linear transformation from V→W, then the following are equivalent.
 - (i) T preserves inner products. (ii) T is an isomorphism.
 - (iii) T carries every orthonormal basis of V onto an orthonormal basis for W.
 - (iv) T carries some orthonormal basis of V onto an orthonormal basis for W.
