LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016

16PMT1MC02 - REAL ANALYSIS

Date: 04-11-2016 Time: 01:00-04:00	Dept. No.	Max.: 100 Marks

Answer all Questions. All questions carry equal marks.

(a) (i) Suppose f is a real function defined on R which satisfies lim_{h 0}[f(x + h) - f(x - h)] = 0, for every x ∈ R. Does this imply that f is continuous?
 (5 marks)

(OR)

- (ii) Suppose f is a continuous mapping of a compact metric space X into a metric space.

 Then prove that f(X) is compact.

 (5 marks)
- (b) (i) Let A and E be disjoint nonempty closed subsets in a metric space X and define

$$f(p) = \frac{\rho_A(p)}{\rho_A(p) + \rho_B(p)}$$
, p X , where $\rho_E(x) = inf_{z \in E}d(x,z)$. Show that f is a continuous function on X whose range lies in [0,1] and $f^{-1}(\{0\}) = A$ and $f^{-1}(\{1\}) = B$.

(ii)Prove that for any monotonic function on (a,b), the set of points at which f is discontinuous is atmost countable. (6 marks)

(OR)

- (c) (i) Suppose f is a continuous mapping of [0,1] into itself. Prove that f(x)=x for at least one $x \in [0,1]$. (8 marks)
 - (ii) Assume that f is a continuous real function defined in (a,b) such that $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}, \forall x,y \in (a,b). \text{ Then prove that f is convex.}$ (7 marks)
- 2. (a) (i) If f is continuous on [a, b], then prove that $f \in \{(a)\}$.

(OR)

- (ii) If $f_1 \in \Re(\alpha)$ and $f_2 \in \Re(\alpha)$ on [a, b], then prove that $f_1 + f_2$ (α).
- (b) (i) Define a refinement of a partition P. If P* is a refinement of P then prove that $L(P, f, \infty) \le L(P^*, f, \infty)$ and $U(P^*, f, \infty) = U(P, f, \infty)$. (5 marks)
 - (ii) State and prove a necessary condition and sufficient condition for a bounded real valued function to be a Riemann-Steiltjes integrable. (10 marks)

(OR)

- (c) (i) Suppose increases on [a, b], $\alpha \le x_0 \le b$, ∞ is continuous at x_0 , $f(x_0)=1$ and f(x)=0 if $x \ne x_0$. Prove that $f \in \mathbb{N}$ (a) and $\int_a^b f d\alpha = 0$. (5 marks)
 - (ii) Let $f \in \mathbb{N}$ (α) on [a, b], $m \le f \le M$, φ be continuous on [m,M] and $h(x) = \varphi(f(x))$ on [a,b]. Then prove that $h \in \mathbb{M}$ (α) (10 marks)

1

3. (a) (i) Prove that $\lim_{n \to \infty} \int_{n'(0)}^{\infty} f'(0)$ where $\int_{n}^{\infty} \int_{n}^{\infty} \int_{n}^{\infty} f(x) dx = \frac{\sin nx}{\sqrt{n}}$, x real, n = 1, 2, ...

(OR)

- (ii) Find for what values of x, the given series $\sum_{n=1}^{\infty} \frac{1}{1+n^2x}$ converges absolutely? (5 marks)
- (b) (i) Prove that for $f_n(x) = \frac{x^2}{(1+x^2)^n}$, x real, n = 0,1,2..., the following:
 - 1. $f_n(x)$ are continuous functions for any x and n.
 - 2. $\sum_{n=0}^{\infty} f_n(x)$ is a convergent series and the limit of the sum is continuous.
 - (ii) If $\{f_n\}$ is a sequence of continuous functions on a set E and if $f_n \to f$ uniformly on E, then prove that f is continuous on E. (5+ 10 marks)

(OR)

- (c) If $\{f_n\}$ is a sequence of differentiable functions on [a, b] such that $\{f_n(x_0)\}$ converges for $x_0 \in [a, b]$ and $\{f_n'\}$ converges uniformly on [a, b], then prove that $\{f_n\}$ converges uniformly on [a, b] to a function f and $\lim_{n \to \infty} f'_n(x) = f'(x)$. (15 marks)
- 4. (a) (i) State and prove the Bessel's Inequality and hence derive the Parseval's formula.

(OR)

(ii) Let
$$S = \{ \varphi_0, \varphi_1, \varphi_2, \dots \}$$
, where $\varphi_0(x) = \frac{1}{2\pi}, \varphi_{2n-1}(x) = \frac{\cos nx}{\sqrt{\pi}}$ and $\varphi_{2n}(x) = \frac{\sin nx}{\sqrt{\pi}}$,

for n = 1, 2.... Prove that S is orthnormal on any interval of length 2 π . (5 marks)

- (b) (i) State and prove Riesz-Fischer theorem.
 - (ii) State and prove Riemann-Lebesgue lemma.

(8+7 Marks)

(OR)

- (c) (i) Define Dirichlet's kernel and prove that $\frac{1}{2} + \sum_{k=1}^{n} coskx = \frac{\sin(2n+1)\frac{x}{2}}{2sin\frac{x}{2}}$, $x \neq 2m\pi$
 - (ii) If $f \in L[0,2\pi]$, f is periodic with period 2π and $\{s_n\}$ is a sequence of partial sums of Fourier series generated by f, $s_n = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k coskx + b_k sinkx), n = 1,2...$ then prove that

$$s_n(x) = \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t) + f(x-t)}{2} D_n(t) dt$$
 (5+10 marks)

- 5. (a) (i) If A, B,C \in L(Rⁿ, R^m) and c is a scalar then prove the following:
 - 1. $|A + B| \le ||A|| + ||B||$
 - 2. |cA|| = |c|||A||
 - 3. $A C \| \le \|A B\| + \|B C\|$.

(OR)

- (ii) Suppose X is a complete metric space and ϕ is a contraction of X into X. Prove that there exist one and only one $x \in X$ such that $\phi(x) = x$. (5 marks)
- (b) State and prove the inverse function theorem.

(OR)

(c) State and prove the implicit function theorem.

(15 marks)
