LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016

16PMT1MC03 / MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS

	07-11-2016 Dept. No. Dept. No.	Max.: 100 Marks
Answer all questions. Each question carries 20 marks.		
1. (a)	Determine whether the given sets of functions are linearly dependent (ii) $1, x, x^2,, x^n$, (iii) $sinx, sin2x, sin3x$ on $I = [0, 2\pi]$. (OR)	or independent. (i) e^x , e^{-x} (5)
(b)	With usual notation, prove that $uL(v) - vL(u) = a_0(t) \frac{d}{dt} W[u, v]$ twice differentiable functions and a_0 , a_1 are continuous on I .	$+ a_1(t)W[u,v]$, where u, v are (5)
(c)	Find the general solution of equation $x'''(t) - x'(t) = e^t$.	(15)
(d)	Derive the various solutions of the second order linear homog coefficients.	enous equation with constant (15)
2. (a)	State and prove Laplace's integral representation. (OR)	(5)
(b)	Let $P_l(x)$ be the Legendre's polynomial. Prove that $P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l}$	(5)
	Solve by Frobenius method, $x(1-x)\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} - y = 0$.	(15)
(d)	OR) Derive the orthogonality properties of the Legendre's polynomial.	(15)
3. (a)	Show that $J_{-n}(x) = (-1)^n J_n(x)$ where <i>n</i> is a positive or negative into	eger. (5)
(b)	Obtain the generating function of Bessel's function.	(5)
(c)	Solve: $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0$ where $n \ge 0$.	(15)
(d)	(OR) Derive the recurrence relations for Bessel's function.	(15)
4. (a)	Argue that all the eigen values of Strum-Liouville problem are real.	(5)
(b)	(OR) Find the first three approximation of the initial value problem $x'(t)$	$= 2t(1+x), x(0) = 1, t \ge 0.$
(c)	State and prove Picard's theorem for boundary value problem. (OR)	(5) (15)
(d)	Prove that $x(t)$ is a solution of the equation $L[x(t)] + f(t) = 0$, $a \le a$	
- ()	if $x(t) = \int_a^b G(t,s)f(s) ds$ where $G(t,s)$ is the Green's function.	(15)
5. (a)	Explain asymptotically stable solution by an example. (OR)	(5)
(b)	Define an autonomous system and state the stability behaviours of the	system. (5)
(c)	State and prove the fundamental theorems on the stability of non-auto	nomous systems. (15)
(d)	Discuss the stability of linear system $x' = Ax$ using Lyapunov's func	tion. (15)