## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034



## M.Sc. DEGREE EXAMINATION - MATHEMATICS

## FIRST SEMESTER - NOVEMBER 2016

## 16PMT1MC04 - COMPUTER ALGORITHMS

|    | Date: 09-11-2016 Dept. No. Max. : Time: 01:00-04:00                                                                                                                                                      | 100 Marks             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|    | Answer ALL the Questions:                                                                                                                                                                                |                       |
| 1. | a) The Fibonacci numbers are defined as $f_0 = 1$ , $f_1 = 1$ , $f_i = f_{i-1} + f_{i-2}$ for $i > 1$ . Write a recu                                                                                     | ırsive                |
|    | algorithm to compute $fi$ . Simulate FIBONACCI( $n$ ), when $n = 6$ .                                                                                                                                    | (5)                   |
|    | OR b) Define a circular queue. Write an algorithm to delete a data from circular queue.                                                                                                                  | (5)                   |
|    | <ul> <li>c) (i) Discuss: Analyzing algorithms in general.</li> <li>(ii) Given a set n ≥ 1 elements, write an algorithm to print all possible permutations of t Simulate PERMUTATION(A, 1, 2).</li> </ul> | his set.<br>(6 + 9)   |
|    | OR<br>d) Write algorithm HEAPIFY. Simulate A(1 : 6) = (12, 30, 44, 50, 61, 70).                                                                                                                          | (15)                  |
| 2. |                                                                                                                                                                                                          | (5)                   |
|    | OR                                                                                                                                                                                                       | . ,                   |
|    | b) Give procedure PARTITION.                                                                                                                                                                             | (5)                   |
|    | c) State algorithm BINSEARCH. Simulate it on                                                                                                                                                             |                       |
|    | A(1:10) = (12, 34, 43, 45, 50, 62, 69, 70, 80, 90) when (i) $x = 34$ , (ii) $x = 57$ , (iii) $x = 9$                                                                                                     | 00. Draw the          |
|    | binary decision tree when $n = 10$ .                                                                                                                                                                     | (15)                  |
|    | OR                                                                                                                                                                                                       |                       |
|    | d) Write algorithm QUICKSORT. Simulate it on $A(1:10) = (63, 75, 12, 47, 23, 90, 55, 11, 2, 76)$ .                                                                                                       | (15)                  |
| 3. | a) Give the control abstraction for greedy method.  OR                                                                                                                                                   | (5)                   |
|    | b) Explain the problem 'Optimal Merge Pattern'. c) Explain Job sequencing problem with deadlines. State greedy algorithm for sequencing                                                                  | (5)<br>unit jobs with |
|    | deadlines and profits. Find the optimal solution when $n = 5$ , $(p_1, p_2, p_3, p_4, p_5) = (20, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15$                                                                | $, 10, 5, 1), (d_1$   |
|    | $d_2, d_3, d_4, d_5) = (2, 2, 1, 3, 3).$                                                                                                                                                                 | (15)                  |
|    | OR                                                                                                                                                                                                       |                       |
|    | d) Explain optimal storage on tapes problem. With usual notations, prove that if                                                                                                                         |                       |
|    | $l_1 \le l_2 \le \cdots$ : $l_m$ , then the ordering $i_j = j$ , $1 \le j \le n$ minimizes $\sum_{i=1}^{n} \sum_{j=1}^{k} l_{i_j}$ overall possible permutations of $i_j$ .                              | (15)                  |
| 4. | a) Describe depth first search with an example.                                                                                                                                                          | (5)                   |
|    | OR                                                                                                                                                                                                       |                       |
|    | <ul><li>b) Explain the inorder traversal with an example.</li><li>c) Explain in detail the 4-queens problem. Give a backtracking algorithm to solve the</li></ul>                                        | (5)                   |
|    | n-queens problem.  OR                                                                                                                                                                                    | (15)                  |
|    | d) Explain the sum of subsets problem. Give a recursive backtracking algorithm for sum o                                                                                                                 | f subsets             |
|    | problem.                                                                                                                                                                                                 | (15)                  |

| (5) |
|-----|
|     |

OR
b) Write a note on nondeterministic algorithm.

c) Define a node cover for a graph G. Determine the minimum node cover for the following graph.



Prove that the node cover decision problem is NP-Complete.

(15)

(5)

d) Explain the maximum clique problem with an example. Prove that CNF-satisfiability reduces to clique decision problem. (15)

\*\*\*\*\*\*