LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER - NOVEMBER 2016

MT 1101 - MATHEMATICS FOR STATISTICS

Date: 09-11-2016	Dept. No.	Max. : 100 Marks
------------------	-----------	------------------

Time: 01:00-04:00

PART A

Answer all the questions:

 $(10 \times 2 = 20)$

- 1. If f(x) = (4x 1)(x 5), find the values of f(3) and $f\left(\frac{1}{2}\right)$.
- 2. Differentiate $\frac{x^3}{3x-2}$ with respect to x.
- 3. For what value of x is $6x^3 2x^2 + 7x 4$ a decreasing function?
- 4. Find the point of inflexion on $y = x^3 9x^2 + 7x 6$.
- 5. Using Maclaurin's series, expand tan x as an infinite series.
- 6. Find the first order partial differential coefficients of u = cos(7x + 4y).
- 7. Integrate x^2e^x with respect to x.
- 8. Evaluate $\int \frac{dx}{4+9x^2}$
- 9. Write any two properties of definite integrals.
- 10. Find $\int_{1}^{2} (2x^3 + x 4) dx$.

PART B

Answer any FIVE questions:

 $(5 \times 8 = 40)$

11. (a) If
$$y = \frac{(x+3)}{(x+2)}$$
, find $\frac{dy}{dx}$.

- (b) Prove that the tangents to the curve $y = x^2 5x + 6$ at the points (2,0) and (3,0) cut at right angles. (3+5)
- 12. Show that the curve $y = \frac{6x}{x^2+3}$ has three points of inflexion.
- 13. Using mean value theorem, determine c, lying between a and b, when

(i)
$$f(x) = x^3 - 2x^2$$
, $a = 2$, $b = 5$

(ii)
$$f(x) = x^3 + x$$
, $a = 1, b = 2$.

- 14. If $u = log(x^2 + y^2 + z^2)$, prove that $x \frac{\partial^2 u}{\partial y \partial z} = y \frac{\partial^2 u}{\partial z \partial x} = z \frac{\partial^2 u}{\partial x \partial y}$.
- 15. Integrate $x^2 \cos 3x$ with respect to x.
- 16. Evaluate $\int \frac{x}{x^2 + x + 1} dx$.
- 17. Prove that $\int_{0}^{\frac{\pi}{2}} log \sin x \, dx = \frac{\pi}{2} log \left(\frac{1}{2}\right)$.
- 18. Evaluate $(x^2 + y^2) dxdy$ over the region for which $x, y \ge 0$ and $x + y \le 1$.

PART C

Answer any TWO questions:

 $(2 \times 20 = 40)$

- 19. (a) If $f(x) = x^3 + x^2 + x 1$, simplify f(x+1) 3f(x) + 2f(x-1)
 - (b) If $y = \sin x \sin 2x \sin 3x$, find $\frac{dy}{dx}$.
 - (c) Differentiate $x^{(logx)^2}$ with respect to (xlogx)(loglogx) (7+6+7)

20. (a) Find the maximum and minimum values of the function $y = x^3 - 18x^2 + 96x + 1$.

(b) Prove that
$$log(1 + x + x^2) = x + \frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{1}{4}x^4 + \cdots$$
 (10+10)

21. (a) Verify Euler's theorem when $u = x^3 - 3x^2y + 3xy^2 + y^3$.

(b) Prove that
$$\int_{0}^{\frac{\pi}{4}} log(1 + tan\theta) d\theta = \frac{\pi}{8} log 2.$$
 (10+10)

22. (a) Evaluate $\int \frac{dx}{(x+1)\sqrt{x^2+x+1}}$.

(b) By transforming into polar coordinates, evaluate $\iint \frac{x^2y^2}{x^2+y^2} dxdy$ over the annular region between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ (b > a).

(10+10)
