LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIRST SEMESTER - NOVEMBER 2016

MT 1502 - ALGEBRA AND CALCULUS - I

Date: 05-11-2016 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART-A

Answer ALL questions:

 $(10 \times 2 = 20)$

- [1] Find the nth differential coefficient of $(2x + 3)^m$.
- [2] Show that the polar sub tangent of the curve $r = e^{\theta \cot \alpha}$ is $r \tan \alpha$.
- [3] Write down the condition for maxima or minima of two variables.
- [4] Write the steps used in Lagrange's method of undetermined multiplier to find the minimum or maximum value of f(x, y, z) subject to the condition $\varphi(x, y, z) = 0$.
- [5] Define curvature.
- [6] Write down the pedal equation of a curve.
- [7] Form a rational cubic equation which have the roots $1,3-\sqrt{-2}$.
- [8] Find the sum and the product of the four roots of the equation $x^4 2x^3 + 4x^2 + 6x 21 = 0$.
- [9] Find the imaginary roots of the equation $x^7 + 8x^5 x + 9 = 0$.
- [10] If α, β, γ are the roots of the equation $x^3 + qx + r = 0$, find the equation whose roots are $5\alpha, 5\beta, 5\gamma$.

PART-B

Answer any FIVE

 $(5 \times 8 = 40)$

[11] Find (i) $D^{n}(\cos^{3} x)$ (ii) $D^{n}(e^{x} \sin x)$

(4+4)

- [12] Find the angle of intersection of the cardioids $r = a(1 + \cos \theta)$ and $r = b(1 \cos \theta)$.
- [13] Discuss the maxima or minima of the function $f = y^2 + 2yx^2 + 4x 3$.
- [14] Find the minimum value of $f = x^2 + y^2 + z^2$ when x + y + z = 3a.
- [15] Prove that the radius of curvature at any point of the cycloid

$$x = a(\theta + \sin \theta)$$
 and $y = a(1 - \cos \theta)$ is $4a\cos \frac{\theta}{2}$.

[16] Solve the equation $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ which one root is $-1 + \sqrt{-1}$.

[17] Find
$$\frac{1}{\alpha^5} + \frac{1}{\beta^5} + \frac{1}{\gamma^5}$$
, when α, β, γ are the roots of the equation $x^3 + 2x^2 - 3x - 1 = 0$.

[18] Show that the roots of the equation $x^3 + px^2 + qx + r = 0$, are in A.P if $2p^3 - 9pq + 27r = 0$.

PART-C

Answer any TWO:

 $(2 \times 20 = 40)$

[19] (i) If
$$y = e^{a \sin^{-1} x}$$
, prove that $(1 - x^2)y_2 - xy_1 - a^2y = 0$. Hence show that
$$(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$
. (10+10)

- (ii) Find the maximum or minimum values of $2(x^2 y^2) x^4 + y^4$.
- [20] (i) Find the evolute of the parabola $y^2 = 4ax$ at the time 't'. (12+8)

(ii) Find the asymptotes of $x^3 + 2x^2y - x$ $y^2 - 2y^3$	$x^3 + 4y^2 + 2xy + y - 1 = 0$.
[21] (i) If the sum of the two roots of the equation $x^4 + p$	$ax^3 + qx^2 + rx + s = 0$ equals the sum the other
two, prove that $p^3 + 8r + 4 pq$	(10+ 10

(ii) Solve the equation $6x^5 - x^4 + 43x^3 + 43x^2 + x - 6 = 0$.

[22] (i) Decrease the roots of the equation $x^5 - 6x^2 - 4x + 5 = 0$ by 3. (6+14)

(ii) Find the real root of $x^3 - 7x + 7 = 0$ correct to two place of decimals using Horner's method.