LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER - NOVEMBER 2016

MT 1503 - ANALYTICAL GEOMETRY OF 2D, TRIG. & MATRICES

Date: 07-11-2016 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART - A

Answer all questions:

 $(10 \times 2 = 20)$

- 1. Write the expansion of tan nt in terms of tan
- 2. If $x = \cos + i \sin \theta$ and $\frac{1}{x} = \cos i \sin \theta$ then find $x^n + \frac{1}{x^n}$ and $x^n \frac{1}{x^n}$
- 3. Show that $\cosh^2 x + \sinh^2 x = \cosh 2x$
- 4. Prove that $\tanh^{-1} x = \frac{1}{2} \log_{e} \left(\frac{1+x}{1-x} \right)$
- 5. Define symmetric matrix and give an example.
- 6. Find the eigen values of $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
- 7. Find the pole of the line 2x + 3y + 4 = 0 with respect to the parabola $y^2 = 8x$
- 8. Define conjugate of two diameters of an ellipse.
- 9. Find the asymptotes of the hyperbola $2x^2 + 2xy 3x + y = 0$
- 10. Find the distance between the points (r_1, θ_1) and (r_2, θ_2)

PART - B

Answer any five questions:

 $(5 \times 8 = 40)$

- 11. Expand sin⁶ in a series of cosines of multiples of .
- 12. Evaluate $\lim_{x \to \pi/2} \frac{\sin x + \cos 2x}{\cos^2 x}$
- 13. Prove that $\cosh 2y + \cos 2x = 2$ if $\cos(x + iy) = \cos + i \sin$
- 14. If $\cosh u = \sec \theta$, prove that $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$
- 15. Using Cayley Hamilton theorem find the inverse of the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$

- 16. If chords of a parabola are drawn through a fixed point, then show that the locus of the middle points is another parabola.
- 17. Find the locus of the mid-points of chords of the parabola which subtend a right angle at the vertex of the parabola.
- 18. If e, e_1 are the eccentricities of a hyperbola and its conjugate, show that $\frac{1}{e^2} + \frac{1}{e_1^2} = 1$

PART – C

Answer any two questions:

 $(2 \times 20 = 40)$

- 19. (i) Express cos 8 in terms of sin .
 - (ii) Expand $\sin^3 \theta \cos^5 \theta$ in a series of sines of multiples of θ (10+10)
- 20. (i) Find the real part and imaginary part of $tan^{-1}(x + iy)$.
 - (ii) Prove that $2e^{2A} = \cosh 2\phi \cos 2\theta \text{ if } \log \sin(+i\phi) = A + iB$. (12+8)
- 21. Diagonalize the matrix $\begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$
- 22. (i) A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose centre is C meets the circle $x^2 + y^2 = a^2 + b^2$ at Q

and Q'. Prove that CQ and CQ' are conjugate diameters of the ellipse.

(ii) Derive polar equation of a conic. (10+10)