LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

SECOND SEMESTER - NOVEMBER 2016

MT 2503 - ANALY. GEOM. OF 3D, FOURIER SERIES & NUM. THEORY

Date: 14-11-2016 Dept. No.	Max.: 100 Marks
----------------------------	-----------------

Time: 01:00-04:00

PART - A

Answer ALL questions.

 $(10 \times 2 = 20)$

- 1. Find the angle between the planes 2x y + z = 6, x + y + 2z = 3.
- 2. State the equation of the straight line joining two points (x_1,y_1,z_1) and (x_2,y_2,z_2) .
- 3. Find the equation of the sphere with centre (-1,2,-3) and radius 3 units.
- 4. What is the general equation of the sphere passing through a circle?
- 5. Find the Fourier coefficient a_0 for the function $f(x) = x^2$ in the interval $(-\pi, \pi)$.
- 6. Give the Fourier series expansion of an odd function.
- 7. Find the number of divisors of 480 excluding 1 and 480.
- 8. State Wilson's theorem.
- 9. State Cauchy's inequality.
- 10. Show that $n^n > 1 \cdot 3 \cdot 5 \cdot (2n-1)$.

PART - B

Answer any FIVE questions

 $(5\times8=40)$

- 11. Find the equation of the plane which passes through the point (-1,3,2) and perpendicular to the planes x+2y+2z=5 and 3x+3y+2z=8.
- 12. Find the symmetric form of the equation of the straight line which is the intersection of the planes x+5y-z=7 and 2x-5y+3z+1=0.
- 13. Find the equation of the sphere having the circle $x^2+y^2+z^2-2x+4y-6z+7=0$, y+2z=5 for a great circle.
- 14. Find the equation of the sphere which touches the sphere $x^2+y^2+z^2-6x+2z+1=0$ at the point (2,-2,1) and passes through the origin.
- 15. Express $f(x) = \frac{1}{2}(\pi x)$ as a Fourier series with period 2π in the interval $[0,2\pi]$.
- 16. If d_1 , d_2 , . . . d_r (including 1 and N) are the divisors of N , then show that $\phi(d_1) + \phi(d_2) + \dots + \phi(d_r) = N$.
- 17. Show that $13^{2n+1} + 9^{2n+1}$ is divisible by 22.

18. Prove that $8xyz < (x+y)(y+z)(z+x) < \frac{8}{3}(x^3 + y^3 + z^3)$.

PART - C

Answer any TWO questions.

 $(2 \times 20 = 40)$

- 19. (a) Show that the origin lies in the acute angle between the planes x+2y+2z=9, 4x-3y+12z+13=0. Find the planes bisecting the angles between them and point out which bisects the obtuse angle.
 - (b) Find the shortest distance between the lines

$$\frac{x-3}{-1} = \frac{y-4}{2} = \frac{z+2}{1}$$
, $\frac{x-1}{1} = \frac{y+7}{3} = \frac{z+2}{2}$.

- 20. (a) Find the equation of the sphere passing through the points (2,3,1), (5,-1,2), (4,3,-1) and (2,5,3).
 - (b) Find the equation of the sphere which passes through the circle $x^2+y^2+z^2-2x-4y=0; x+2y+3z=8$ and touches the plane4x+3y=25.
- 21.(a) If f(x) = -x in $-\pi < x < 0 = x$ in $0 \le x < \pi$, expand f(x) as Fourier series in the interval $(-\pi, \pi)$ and deduce that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$.
 - (b) If x and y are primes to the prime number n, show that $x^{n-1} y^{n-1}$ is divisible by n. Deduce that $x^{12} y^{12}$ is divisible by 1365.
- 22. (a) If M = 1 . 3. 5 . . . (p-2) where p is an odd prime, show that $M^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}$.
 - (b) If x and y are positive quantities whose sum is 4, show that $(x + \frac{1}{x})^2 + (y + \frac{1}{y})^2 = 12\frac{1}{2}$.

......