LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - NOVEMBER 2016

MT 2810 - ALGEBRA

Time: 01:00-04:00	
ANSWER ALL QUESTIONS.	
I a) Prove that conjugacy is an equivalence relation.	
[OR]	
b) If $o(G) = p^2$ where p is a prime number, then prove that G is abelian. (5)	
c i) If p is a prime number and $p/o(G)$, then prove that G has an element of order p	
ii) If p is a prime number, then prove that any group of order $2p$ has a normal	
subgroup of order p (10)) +5)
[OR]	
d i) State and prove Sylow's first theorem.	
ii) Let G be a group of order11 ² 13 ² . Discuss about the Sylow subgroups of G. Also	
prove that G is abelian. (7	+8)
II a) Show that $x^6 + 8x^5 - 16x^4 + 24x^3 - 20x + 10$ is irreducible over rational numbers.	
[OR]	
b) If $f(x)$ and $g(x)$ are primitive polynomials then prove that $f(x)g(x)$ is a	
primitive polynomiai. (5)	
c i) State and prove the Eisentein criterion.	
ii) Prove $x^2 + 1$ is irreducible over the integers mod 7. (10)) +5)
[OR]	
d i) State and prove Gauss lemma.	
ii) Prove that the polynomial $1 + x + x^2 \dots + x^{p-1}$, where p is a prime number is	
irreducible over the field of rational numbers. (7-	-8)
III a) Find the degree of $\sqrt{2} + \sqrt{3}$ over Q.	
[OR]	
b) Determine the degree of the splitting field of the polynomial $x^4 + 1$ over the field of rational nu	mbers
(5)	
c) Prove that the element $a \in K$ is algebraic over F if and only if $F(a)$ is a finite	
extension of F. (15)	5)
	-

[OR]

d) i) Prove that a polynomial of degree n over a field can have at most n roots in any extension field.
ii) Let F be any field and let p(x) = x² + αx + β, α, β ∈ F be in F[x]. Prove that p(x) can be split by any extension of degree 2 of F.
IV a) Express x₁² + x₂² + x₃² in the elementary symmetric functions in x₁², x₂², x₃².

[OR]

- b) Prove that the fixed field of G is a subfield of K.
- c) Let F be a field and let $F(x_1, \dots, x_n)$ be the field of rational functions in x_1, \dots, x_n over F. Suppose S is the Field of symmetric rational functions. Then prove that
 - (i) $[F(x_1, ..., x_n): S] = n!$
 - (ii) $G([F(x_1, ..., x_n): S]) = S_n$
 - (iii) If a_1, \dots, a_n are elementary symmetric functions in x_1, \dots, x_n then $S = F(a_1, \dots, a_n)$.
 - (iv) $F(x_1, \dots, x_n)$ is the splitting field over $F(a_1, \dots, a_n) = S$ of the polynomial $t^n a_1 t^{n-1} + a_2 t^{n-2} \dots + (-1)^n a_n$

OR

- d) Prove that K is a normal extension of F if and only if K is the splitting field of some polynomial over F. (15)
- V a) Prove that any two finite fields having the same number of elements are isomorphic. .

[OR]

- b) Derive the cyclotomic polynomials $_3(x)$ and $_4(x)$. (5)
- c) Prove that the multiplicative group of nonzero elements of a finite field is cyclic.

[OR]

d) Show that a finite division ring is necessarily a commutative field (15)

(5)