LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 ## M.Sc. DEGREE EXAMINATION - MATHEMATICS SECOND SEMESTER - NOVEMBER 2016 | Date: $11-11-2016$ Dept. No. | MT 2811 - MEASURE THEORY AND INTEGRATION | | | | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|--|--|--| | (a) Let f and g be measurable functions on the set E then prove that f + g and fg are measurable functions. (DR) (b) Prove that the class M of Lebesgue measurable sets is a Sigma Algebra. (c) Prove that the outer measure of an interval equals to its length. (d) (i) Prove that not every measurable set is a Borel set. (ii) Prove that every interval is measurable. (7+8) (a) Show that lim ∫₀[∞] dx / (1+x/2)^{nx+1/n} = 1. (b) Show that ∫₀[∞] sint / (1+x/2)^{nx+1/n} = 1. (c) If f and g be integrable functions, then prove the following: (i) af is integrable and af dx = a∫ f dx. (ii) f + g is integrable and f(f + g) dx = ∫ f dx + ∫ g dx (iii) If f = 0 a.e., then f dx = 0. (iv) If A and B are disjoint measurable sets, then ∫_A f dx + ∫_B f dx = ∫_{AUB} f dx (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (c) If μ is a σ-inite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (d) Define a complete measure. Let μ* be an outer measure on R(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ-ring and μ* restricted to S* is a | | | Dept. No. | Max.: 100 Marks | | | | | (b) Prove that the class M of Lebesgue measurable sets is a Sigma Algebra. (5) (c) Prove that the outer measure of an interval equals to its length. (15) (d) (i) Prove that not every measurable set is a Borel set. (ii) Prove that every interval is measurable. (7+8) 2. (a) Show that lim ∫ ₀ [∞] dx (1+x/n) ² pv ₁ /m = 1. (5) (b) Show that ∫ ₀ [∞] sim dx (1+x/n) ² pv ₂ /m = 1. (5) (c) If f and g be integrable functions, then prove the following: (i) af is integrable, and ∫ f + g dx = a∫ f dx. (ii) If f = 0 a.e., then f dx = a∫ f dx. (iii) If f = 0 a.e., then f dx = 0 (iv) If f ≤ g a.e., then f dx ≤ ∫ g dx. (v) If A and B are disjoint measurable sets, then ∫ _A f dx + ∫ _B f dx = ∫ _{AuB} f dx (it) Riemann integrable over [a, b] if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (5) (c) If μ is a σ-inite measure on a ring , then prove that it has a unique extension to the σ-ring S(3). (OR) (d) Define a complete measure. Let μ* be an outer measure on 3 μ(π) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | Answer ALL questions: | | | | | | | | (b) Prove that the class M of Lebesgue measurable set is a Sigma Algebra. (5) (c) Prove that the outer measure of an interval equals to its length. (15) (d) (i) Prove that not every measurable set is a Borel set. (ii) Prove that every interval is measurable. (7+8) 2. (a) Show that lim ∫₀[∞] dx / (1+x̄)ⁿx^{1/n} = 1. (5) (b) Show that ∫₀[∞] simt / (1+x̄)ⁿx^{1/n} = 1. (5) (c) If f and g be integrable functions, then prove the following: af is integrable and af dx = a∫f dx. f f g is integrable, and ∫(f + g) dx = ∫f dx + ∫g dx ff f = 0 a.e., then f dx = 0. ff A and B are disjoint measurable sets, then ∫_A f dx + ∫_B f dx = ∫_{AUB} f dx (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (5) (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (CR) (c) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (CR) (d) Define a complete measure. Let μ* be an outer measure on R(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | | | | | | | | | (OR) (d) (i) Prove that not every measurable set is a Borel set. (ii) Prove that every interval is measurable. (7+8) 2. (a) Show that $\lim_{x \to \infty} \int_{0}^{\infty} \frac{dx}{(1+\frac{2}{n})^n x^{1/n}} = 1$. (5) (b) Show that $\int_{0}^{\infty} \frac{\sin t}{e^t - x} dt = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n^2 + 1}, -1 \le x \le 1$. (5) (c) If f and g be integrable functions, then prove the following: (i) af is integrable and $ af dx = a \int f dx$. (ii) $f + g$ is integrable and $ ff + g dx = \int f dx + \int g dx$ (iii) If $f = 0$ $a.e.$, then $f dx = 0$. (iv) If $f \le g$ $a.e.$, then $f dx \le \int g dx$. (v) If f and f are disjoint measurable sets, then f | (b) Pro | ove that the class M of Le | • • | Algebra. (5) | | | | | (d) (i) Prove that not every measurable set is a Borel set. (ii) Prove that every interval is measurable. (7+8) 2. (a) Show that $\lim_{n \to \infty} \int_{(1+\frac{x}{n})^n x^{1/n}}^{\infty} dx = \int_{n=1}^{\infty} \frac{x^{n-1}}{n^2 + 1}, -1 \le x \le 1$. (b) Show that $\int_0^{\infty} \frac{\sin t}{e^{t-x}} dt = \sum_{n=1}^{\infty} \frac{x^{n-1}}{n^2 + 1}, -1 \le x \le 1$. (c) If f and g be integrable functions, then prove the following: (i) af is integrable and $ af dx = a \int_{n=1}^{\infty} f dx$. (ii) $f + g$ is integrable, and $\int_{n=1}^{\infty} f dx = \int_{n=1}^{\infty} f dx + \int_{n=1}^{\infty} f dx$. (iii) If $f = 0$ a.e., then $f dx \le \int_{n=1}^{\infty} g dx$. (v) If $f = 0$ a.e., then $f = 0$ a.e., then $f = 0$ and $f = 0$. (iv) If $f = 0$ a.e., then $f = 0$ a.e., then $f = 0$ and $f = 0$. (iv) If $f = 0$ a.e., then $f = 0$ a.e., then $f = 0$ and $f = 0$. (iv) If $f = 0$ a.e., then =$ | (c) Pro | ove that the outer measu | re of an interval equals to its length | . (15) | | | | | (a) Show that lim ∫₀[∞] dx / (1+x)ⁿx^{1/n} = 1. (5) (b) Show that ∫₀[∞] sint / e^t-x dt = ∑_{n=1}[∞] xⁿ⁻¹ / n² ≤ x ≤ 1. (5) (c) If f and g be integrable functions, then prove the following: (i) af is integrable and af dx = a ∫ f dx. (ii) f + g is integrable, and ∫ (f + g) dx = ∫ f dx + ∫ g dx (iii) If f = 0 a.e., then f dx = 0. (iv) If f ≤ g a.e., then f dx ≤ ∫ g dx. (v) If A and B are disjoint measurable sets, then ∫_A f dx + ∫_B f dx = ∫_{AUB} f dx (15) (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (5) (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (5) (c) If μ is a σ-finite measure on a ring then prove that it has a unique extension to the σ-ring S(R). (OR) (d) Define a complete measure. Let μ* be an outer measure on H(R) and let S* denote the class of μ*- measurable sets. Prove that S* is a σ-ring and μ* restricted to S* is a | (d) (i) | Prove that not every mea | | | | | | | (b) Show that $\int_0^\infty \frac{\sin t}{e^t - x} dt = \sum_{n=1}^\infty \frac{x^{n-1}}{n^2 + 1}$, $-1 \le x \le 1$. (5) (c) If f and g be integrable functions, then prove the following: (i) af is integrable and $ af dx = a f dx$. (ii) $f + g$ is integrable, and $\int (f + g) dx = \int f dx + \int g dx$ (iii) If $f = 0$ a.e., then $f dx = 0$. (iv) If $f \le g$ a.e., then $f dx \le \int g dx$. (v) If $f = 0$ and $ | (ii |) Prove that every inter | val is measurable. | (7+8) | | | | | (b) Show that ∫₀^{∞ sinl} e^{t-x} dt = ∑_{n=1}^{∞ t-1} xⁿ⁻¹ , -1 ≤ x ≤ 1. (c) If f and g be integrable functions, then prove the following: af is integrable and af dx = a ∫ f dx. f + g is integrable, and ∫ (f + g) dx = ∫ f dx + ∫ g dx If f = 0 a.e., then f dx = 0. If f ≤ g a.e., then f dx ≤ ∫ g dx. If A and B are disjoint measurable sets, then j_A f dx + ∫_B f dx = ∫_{AUB} f dx (OR) (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (DR) (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (OR) (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (C) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (OR) (d) Define a complete measure. Let μ* be an outer measure on H(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ-ring and μ* restricted to S* is a | 2. (a) S | Show that $\lim_{n \to \infty} \int_0^\infty \frac{dx}{(1+\frac{x}{n})^n x^n}$ | $\frac{1}{1/n} = 1$, | (5) | | | | | (i) af is integrable and af dx = a ∫ f dx. (ii) f + g is integrable, and ∫ (f + g) dx = ∫ f dx + ∫ g dx (iii) If f = 0 a.e., then f dx = 0. (iv) If f ≤ g a.e., then f dx ≤ ∫ g dx. (v) If A and B are disjoint measurable sets, then ∫_A f dx + ∫_B f dx = ∫_{A∪B} f dx (15) (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (DR) (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (c) If μ is a σ-inite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (d) Define a complete measure. Let μ* be an outer measure on H(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ-ring and μ* restricted to S* is a | (b) Sh | ow that $\int_0^\infty \frac{\sin t}{e^t - x} dt = \sum_n^\infty$ | (OR) $= 1 \frac{x^{n-1}}{n^2 + 1}, -1 \le x \le 1.$ | (5) | | | | | (iii) If $f=0$ a.e., then $f dx=0$. (iv) If $f \leq g$ a.e., then $f dx \leq \int g dx$. (v) If A and B are disjoint measurable sets, then j_A $f dx + \int_B f dx = \int_{A \cup B} f dx$ (15) (OR) (d) Let f be a bounded function defined on the finite interval $[a,b]$, then prove that f is Riemann integrable over $[a,b]$ if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ -algebra is a σ -ring. (OR) (b) Define measure, outer measure and complete measure on a ring \Re and show that if $A,B\in\Re$ and $A\subseteq B$ then $\mu(A)\leq\mu(B)$. (c) If μ is a σ -finite measure on a ring π , then prove that it has a unique extension to the σ -ring π (SR). (OR) (d) Define a complete measure. Let π be an outer measure on π (π) and let π denote the class of π measurable sets. Prove that π is a π -ring and π restricted to π is a | | | | g: | | | | | (iv) If $f \leq g$ a.e., then $f dx \leq \int g dx$. (v) If A and B are disjoint measurable sets, then J_A $f dx + \int_B f dx = \int_{A\cup B} f dx$ (DR) (d) Let f be a bounded function defined on the finite interval $[a,b]$, then prove that f is Riemann integrable over $[a,b]$ if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ -algebra is a σ -ring. (DR) (b) Define measure, outer measure and complete measure on a ring \Re and show that if $A,B\in\Re$ and $A\subseteq B$ then $\mu(A)\leq\mu(B)$. (5) (c) If μ is a σ -finite measure on a ring π , then prove that it has a unique extension to the π -ring π and π -ring π -ring π -ring π -ring and let π -ring π -ring and let π -ring π -ring and let π -ring and let π -ring and let π -ring and π -ring and π -ring and π -ring and π -restricted to -re | (| ii) $f + g$ is integral | ble, and $\int (f+g) dx = \int f dx$ | $+\int gdx$ | | | | | (v) If A and B are disjoint measurable sets, then ∫_A f dx + ∫_B f dx = ∫_{AUB} f dx (15) (OR) (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (OR) (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (5) (c) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (OR) (d) Define a complete measure. Let μ* be an outer measure on H(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | (| iii) If $f = 0$ a.e., th | en $f dx = 0$. | | | | | | (OR) (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (5) (OR) (b) Define measure, outer measure and complete measure on a ring ℛ and show that if A, B ∈ ℛ and A ⊆ B then μ(A) ≤ μ(B). (5) (c) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(ℜ). (DR) (d) Define a complete measure. Let μ* be an outer measure on ℋ(ℛ) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | (| iv) If $f \le g$ a.e., th | en $\int dx \le \int g dx$. | | | | | | (OR) (d) Let f be a bounded function defined on the finite interval [a, b], then prove that f is Riemann integrable over [a, b] if and only if it is continuous a.e. (15) 3. (a) Show that every algebra is a ring and every σ-algebra is a σ-ring. (S) (OR) (b) Define measure, outer measure and complete measure on a ring ℛ and show that if A, B ∈ ℛ and A ⊆ B then μ(A) ≤ μ(B). (5) (c) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(ℜ). (OR) (d) Define a complete measure. Let μ* be an outer measure on ℋ(ℛ) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | (| v) If A and B are di | isjoint measurable sets, then j_A | | | | | | (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (c) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (DR) (OR) (d) Define a complete measure. Let μ* be an outer measure on H(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | | _ | defined on the finite interval $[a, b]$, | , then prove that f is | | | | | (b) Define measure, outer measure and complete measure on a ring R and show that if A, B ∈ R and A ⊆ B then μ(A) ≤ μ(B). (c) If μ is a σ-finite measure on a ring , then prove that it has a unique extension to the σ-ring S(R). (OR) (d) Define a complete measure. Let μ* be an outer measure on H(R) and let S* denote the class of μ* - measurable sets. Prove that S* is a σ - ring and μ* restricted to S* is a | 3. (a) Sh | ow that every algebra is a | 82 | g. (5) | | | | | ring $S(\Re)$. (OR) (OR) (d) Define a complete measure. Let μ^* be an outer measure on $\mathcal{H}(\Re)$ and let S^* denote the class of μ^* - measurable sets. Prove that S^* is a σ - ring and μ^* restricted to S^* is a | | | ure and complete measure on a rin | | | | | | class of μ^* - measurable sets. Prove that ${\it S}^*$ is a σ - ring and μ^* restricted to ${\it S}^*$ is a | 7.0 | | | | | | | | | (d) Define a complete measure. Let μ^* be an outer measure on $\mathcal{H}(\mathcal{R})$ and let \mathcal{S}^* denote the | | | | | | | | complete measure (13) | | ass of μ^* - measurable somplete measure | ets. Prove that $ extbf{ extit{S}^*}$ is a σ - ring and $ ho$ | u^* restricted to S^* is a (15) | | | | 4. (a) Define a convex function and prove that for a convex function ψ on (a,b) such that | | $a < s < t < u < b$, the $\psi(s,t) \leq \psi(s,u)$. | (5) | | | | | |----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--| | | (OR) | | | | | | | | (b) State and prove Jensen's Inequality. | (5) | | | | | | | (c) (i) State and prove Holder's Inequality.
(ii) Let ψ be a function on (a,b) . Then prove that ψ is convex on (a,b) if and only that $a < x < y < b$, the graph of ψ on (a,x) and (y,b) does not lie below the lin $(x,\psi(x))$ and $(y,\psi(y))$. | | | | | | | | (OR) | | | | | | | | (d) State and Prove Minkowski's inequality. | (15) | | | | | | 5. | . (a) Prove that the countable union of sets with respect to a signed measure v is a posit | tive set. | | | | | | | (OR) | | | | | | | | (b) Let v be a signed measure on $[X, S]$. Then prove that there exists a positive and a negative set B such that $A \cup B = X$, $A \cap B = \Phi$. | set <i>A</i> (5) | | | | | | | (c) State and prove Radon-Nikodym Theorem. | (15) | | | | | | | (OR) | | | | | | | | | 15) |