# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034



absolutely.

# M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - NOVEMBER 2016

## MT 2814 - COMPLEX ANALYSIS

|     |                                                                                                         | 15-11-2016                                     | Dept. No.                                              |                     | Max. : 100 Marks             | 3            |
|-----|---------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|---------------------|------------------------------|--------------|
| lim | ie:                                                                                                     | 01:00-04:00                                    | Answer all the                                         | questions.          |                              |              |
| 1   | (م                                                                                                      | State and prove Cauchy                         |                                                        | •                   | (5)                          |              |
| 1.  | a)                                                                                                      | State and prove Cauchy                         | s Estimate.                                            |                     | (5)                          |              |
|     |                                                                                                         |                                                | OR                                                     |                     |                              |              |
|     | b)                                                                                                      | Define (i) Zeros of an a                       | analytic function (ii) index                           | of a closed curv    | e (iii) FEP homotopic (i     | v) Simply    |
|     |                                                                                                         | connected.                                     |                                                        |                     | (5)                          |              |
|     | c)                                                                                                      | State and prove Goursa                         | t's theorem.                                           |                     | (15)                         |              |
|     |                                                                                                         |                                                | OR                                                     |                     |                              |              |
|     | d)                                                                                                      | State and prove homoto                         | ppic version of Cauchy's th                            | eorem.              | (15)                         |              |
| 2.  | a)                                                                                                      | State and prove Hadam                          | ard's three circles theorem                            |                     | (5)                          |              |
|     |                                                                                                         |                                                | OR                                                     |                     |                              |              |
|     | b) Prove that a differentiable function $f$ on $[a, b]$ is convex if and only if $f'$ is increasing.    |                                                |                                                        |                     |                              |              |
|     |                                                                                                         |                                                |                                                        |                     | (5)                          |              |
|     | c)                                                                                                      | Prove that any set $\mathfrak{F} \subset$      | $C(G,\Omega)$ is normal if and $G$                     | only if the follow  | ing conditions are satisfi   | ied: (i) for |
|     |                                                                                                         | each $z$ in $G$ , $\{f(z): f \in \mathbb{R}\}$ | has compact closure in s                               | Ω (ii) F is equicor | ntinuous at each point of    | G.           |
|     |                                                                                                         |                                                |                                                        |                     | (15)                         |              |
|     |                                                                                                         |                                                | OR                                                     |                     |                              |              |
|     | d) Let $G$ be a region which is not the whole plane and let $a \in G$ then prove that there is a unique |                                                |                                                        |                     |                              |              |
|     |                                                                                                         | analytic function $f: G$                       | $\rightarrow C$ having the properties                  | f(a) f(a) = 0  an   | ad $f'(a) > 0$ (b) $f$ is on | ie-one and   |
|     |                                                                                                         | (c) $f(G) = D = \{z :   z\}$                   | <b>(</b> < 1}.                                         |                     | (15)                         |              |
| 3.  | a) S                                                                                                    | how that $\sin \pi z = \pi z \prod$            | $_{n=1}^{\infty}\left( 1-\frac{z^{2}}{n^{2}}\right) .$ |                     | (5)                          |              |
|     |                                                                                                         |                                                | OR                                                     |                     |                              |              |
|     | b) ]                                                                                                    | If $ z  \le 1$ and $p = 0$ the                 | n prove that $\left 1 - E_p(z)\right  \le$             | $ z ^{p+1}$ .       | (5)                          |              |
|     | c)                                                                                                      | (i) If $Re z > -1$ then                        | prove that $log(1+z_m)$                                | onverges absolut    | elvif and only if z-c        | onverges     |

| (ii) Let $(x,d)$ be a co | empact metric space and let $\{g_n\}$ be a sequence of continuous function                                  | s from X       |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------|----------------|--|--|--|
| into C such that         | nto $\mathbb{C}$ such that $g_n(x)$ converges absolutely and uniformly for $x$ in $X$ . Then prove that the |                |  |  |  |
| product $f(x) =$         | act $f(x) = \int_{n=1}^{\infty} (1 + g_n(x))$ converges absolutely and uniformly for x in X. Also prove     |                |  |  |  |
| that there is an in      | teger $n_0$ such that $f(x) = 0$ if and only if $g_n(x) = -1$ for some $n$ , 1                              | $n \leq n_0$ . |  |  |  |
|                          | (7+8)                                                                                                       |                |  |  |  |

### OR

- d) (i) State and prove Bohr-Mollerup theorem.
  - (ii) Let X be a set and let f,  $f_1$ ,  $f_2$ , ... be functions from X into  $\mathbb{C}$  such that  $f_n(x) \to f(x)$  uniformly for  $x \in X$ . If there is a constant a such that  $Re f(x) \le a$  for all  $x \in X$  then prove that  $\exp f_n(x) \to \exp f(x)$  uniformly for  $x \in X$ . (10+5)
- 4. a) State and prove Jensen's formula.

## OR

- b) If f is an entire function with finite order  $\lambda$ , where  $\lambda$  is not an integer then prove that f has infinitely many zeros.
- c) Let f be a non-constant entire function of order  $\lambda$  with f(0) = 1, and let  $\{a_1, a_2, ...\}$  be the zeros of f counted according to multiplicity and arranged so that  $|a_1| \le |a_2| \le ...$  If an integer  $p > \lambda 1$  then prove that  $\frac{d^p}{dz^p} \left( \frac{f'(z)}{f(z)} \right) = -p! \sum_{n=1}^{\infty} \frac{1}{(a_n z)^{p+1}}$  for  $z \ne a_1, a_2, ...$  (15)

#### OR

d) State and prove Hadamard's Factorization theorem.

(15)

**(5)** 

**(5)** 

5. a) Show that  $(z) - (u) = -\frac{\sigma(z-u)\sigma(z+u)}{\sigma(z)^2\sigma(u)^2}$ .

#### OF

- b) Prove that an elliptic function without poles is a constant.
- (i) Prove that a discrete module consists of either of zero alone, of the integral multiples nw of a single complex number w ≠ 0 or of linear combinations n₁w₁ + n₂w₂ with integral coefficients of two numbers w₁, w₂ with non real ratio w₂/w₁.
  - (ii) Prove that  $n_1 w_2 n_2 w_1 = 2\pi i$  (7+8)

### OR

d) Prove that (z) is an elliptic function.

(15)

\*\*\*\*\*