LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.A., B.COM. DEGREE EXAMINATION - ECONOMICS, COMMERCE, COR. SEC. THIRD SEMESTER - NOVEMBER 2016

MT 3203 / MT 3204 - BUSINESS MATHEMATICS

Date: 10-11-2016 Time: 09:00-12:00 Dept. No.

Part A

Answer ALL the questions

 $(10 \times 2 = 20)$

Max.: 100 Marks

- 1. Define total cost function.
- 2. The marginal cost function of a product is given by $\frac{dc}{dq} = 100 10q + 0.1 q^2$, where q is the output. Obtain the total cost function of the firm under the assumption that its fixed cost is Rs. 500.
- 3. Find the differential coefficient of $9x^4 7x^3 + 8x^2 \frac{8}{x} + \frac{10}{x^2}$ with respect to x.
- 4. Define the price elasticity of demand.
- 5. Evaluate $(3 2x x^4)dx$.
- 6. Prove that $\int_{a}^{b} f(x) + \int_{b}^{c} f(x) = \int_{a}^{c} f(x)$. 7. Integrate $\int_{-1}^{1} (2x^{2} x^{3}) dx$.
- 8. Find the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 5 & 7 \end{pmatrix}$.
- 9. If $A = \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} -3 & 2 \\ 4 & -1 \end{pmatrix}$ then find C where 2C = A + B.
- 10. Define objective function.

Part B

Answer any FIVE questions

 $(5 \times 8 = 40)$

- 11. If the demand law is $p = \frac{10}{(x+1)^2}$, find the elasticity of the demand in terms of x.
- 12. If AR and MR denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{AR}{AR-MR}$. Verify this for the linear demand law p=a+bx.
- 13. Investigate the maxima and minima of the function $2x^3 + 3x^2 36x + 10$.

14. If
$$y = \sqrt{x+1} + \sqrt{x-1}$$
, prove that $(x^2 - 1)\frac{d^2y}{dx^2} + x\frac{dx}{dy} = \frac{1}{4}y$.

- 15. Integrate $\frac{x^3}{(x^2+1)^3}$ with respect to x.
- 16. Find the inverse of the matrix $A = \begin{pmatrix} 1 & 0 & -4 \\ -2 & 2 & 5 \\ 3 & -1 & 2 \end{pmatrix}$.
- 17. Find the matrix *B* if $A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$ and $A + 2B = A^2$.

 18. Resolve into partial fractions $\frac{x}{(x-1)(2x+1)}$.

Part C

Answer Any TWO Questions.

- $(2 \times 20 = 40)$
- 19. (a) If the marginal revenue function for output x is given by $R_m = \frac{6}{(x+2)^2} + 5$, find the total revenue by integration. Also deduce the demand function.
 - (b) Let the cost function of a firm is given by the following equation:

 $C = 300x - 10x^2 + \frac{1}{3}x^3$, where C stands for cost and x for output. Find the output at which (i)

Marginal cost is minimum. (ii) Average cost is minimum. (iii) Average cost is equal to Marginal cost. (10+10)

- 20. (a) Find the second order partial derivative of $u = 4x^2 + 9xy 5y^2$.
 - (b) If $y = (x + \sqrt{1 + x^2})^m$, show that $(1 + x_2)y_2 + xy_1 = m^2y$.

(c) If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, prove that $\frac{dy}{dx} = \frac{-1}{(1+x)^2}$. (6+10+4)

21. (a) Integrate $\frac{x+5}{(x+1)(x+2)^2}$ with respect to x.

(b) Evaluate
$$x^2 e^{3x} dx$$
. (10+10)

22. (a) Solve the system of the following equations using matrix method.

$$x + y + z = 7$$
; $x + 2y + 3z = 16$; $x + 3y + 4z = 22$.

(b) Solve the following linear programming problem graphically:

Maximize
$$Z = 2x_1 + 5x_2$$
 Subject to $x_1 + x_2 \le 24$, $3x_1 + x_2 \le 21$, $x_1 + x_2 \le 9$, $x \ge 0$, $y \ge 0$. (10+10)
