LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2016

MT 3810 - TOPOLOGY

	01-11-2016 09:00-12:00	Dept. No.		Max.: 100 Marks	
Answei	all the questions				
I.	a) 1) In any metric space prove that each open sphere is an open set.				
			OR		
	a) 2) In any metric	space prove that each	ch closed sphere is a closed	set. (3)	
	b) 1) State and prove Cantor's intersection theorem.				
	b) 2) Derive Cauchy and Minkowski's inequalities.				
	OR				
	c) 1) Let X and Y be metric spaces and f a mapping of X into Y. Then prove that f is continuous				
	\Leftrightarrow f ⁻¹ (G) is open whenever G is open in Y. What is special about this result in the study of topological spaces.				
	c) 2) Let X be a metric space and let Y be a complete metric space, and let A be a dense subspace of				
	X. If f is uniformly continuous mapping of A into Y then prove that f can be extended uniquely				
	to a uniformly	continuous mapping	g of X into Y.	(7+10)	
II.	a) 1) Prove that eve	ry separable metric	space is second countable.	(3)	
			OR		
	a) 2) Prove that any	continuous image o	of a compact space is compa	act. (3)	
	b) 1) State and prov	e Lindelof's theorer	n.		
	b) 2) State and prov	e Heine Borel theor	em.	(7+10)	
			OR		
	c) 1) Prove that a topological space is compacat iff every class of closed sets with the finite intersection property has non-empty intersection.				
	_			en cover has a finite subcover	
	, ,			(4+13)	
III.	a) 1) Prove that the	product of any non-	empty class of Hausdorff s	pace is a Hausdorff space. (3)	
	a) 2) Prove that a or	ne-to-one continuous	s mapping of a compact spa	ce onto a Hausdorff space is a	
	homeomorphi	sm		(3)	

b) Prove that the following statements are equivalent:(Lebesgue's Covering Lemma need proved)	not be		
(i) X is compact (ii) X is sequentially compact and (iii) X has the Bolzano-Weierstrass pro	operty. (17)		
OR			
c) 1) Quoting the necessary results prove that a metric space is compact iff it is complete and bounded.	l totally		
c) 2) State and prove Ascoli's theorem.	(5+12)		
IV. a) 1) Prove that any continuous image of a connected space is connected	(3)		
OR			
a) 2) Prove that a topological space X is disconnected iff there exists a continuous mapping o	f X onto		
the discrete two- point space $\{0,1\}$.	(3)		
b) 1) Proving the necessary results prove the theorem: Let X be a normal space and let A and	B be		
disjoint closed subspace of X. If [a,b] is any closed interval on the real line, then prove	that there		
exists a continuous real function f defined on X, all of whose values lie in [a.b] such that	t		
f(A) = a and $f(B) = b$.			
b) 2) Prove that the product of any non-empty class of connected space is connected.	(12+5)		
OR			
c) State and prove Urysohn Imbedding theorem.			
V. a) 1) Prove that X_{∞} is compact.	(3)		
OR			
a) 2) Prove that X_{∞} is Hausdorff.	(3)		
b) State and prove Weierstrass approximation theorem.	(17)		
OR			
c) Proving the necessary lemmas, state and prove Real Stone-Weierstrass theorem.	(17)		
