LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2016

MT 3812 - CLASSICAL MECHANICS

Date: 03-11-2016 Time: 09:00-12:00	Dept. No.		Max.: 100 Marks
Answer ALL Questions.			
1. (a) (i) Derive the exp	oression for princip OR	le of virtual work.	
(ii)Discuss the motion of a simple pendulum.(b) (i) Derive the Lagrangian equation of motion.OR			(5)
(ii) Discuss the equation of motion of a compound pendulum.			(15)
 2. (a) (i) Derive the Hamilton's canonical equation. OR (ii) Find the Hamiltonian function of the particle moving under simple harmonic motion and hence deduce the equation of motion. (5) 			
(b) (i) Derive the Han	nilton's principle o OR	f least action.	
(ii) State and explain the Ruthian procedure.(iii) Derive Jacobi's form of principle of least action.			(8+7)
3.(a) (i) Explain the two ty	ypes of periodic mo	otion.	
(ii) What is Legendre's transformation of motion?(b) (i) Discuss the motion of a top by Lagrange's method.OR			(5)
(ii) State the necessity of Canonical transformation.			
(iii) Show that $Q = q \tan p$, $P = \log(\sin p)$ represent a canonical transformation. (7+8)			
4. (a) (i) Express the canonic	cal equation of mot OR	ion in terms of Poisson bra	ckets.
(ii) State and prove Liouvilli's theorem in motion.			(5)
(b)(i) State and prove th	e Jacobi's identity. OR		
(ii) Derive the relationship between Lagrangian and Poisson bracket.(iii) Derive the relation between angular momentum and Poisson bracket .			
5. (a) (i) Derive the Hamilton-Jacobi equation for Hamilton's principle function. OR			
(ii) Prove that $W = \int \sum_{i=1}^{\infty} e^{-it} dt$	ction. (5)		
(b) (i) Derive and explain			
OR (ii) Discuss the Kepler problem using Action angle variable.			(15)