新

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

$\textbf{M.Sc.} \ \mathsf{DEGREE} \ \mathsf{EXAMINATION} - \textbf{MATHEMATICS} \ \textbf{\& STATISTICS}$

THIRD SEMESTER - NOVEMBER 2016

MT 3875 / ST 3876 - MATHEMATICAL FINANCE MODELS

	Date: 14-11-2016 Dept. No. Ime: 09:00-12:00	Max.: 100 Marks		
Answer ALL questions:				
1.	(a) Explain the risk neutral probability.	(5)		
	(OR)			
	(b) State and prove doubling rule.	(5)		
	(c) (i) An individual who plans to retire in 20 years has decided to put an bank at the beginning of each of the next 240 months, after which s \$1,000 at the beginning of each of the following 360 months. Assu yearly interest rate of 6% compounded monthly, how large does A	she will withdraw uming a nominal		
	(ii) Find the rate of return from an investment that for an initial payme returns of 60 at the end of each of the first two periods. (OR)	ent of 100 yields (9+6)		
	(d) State and Prove the Arbitrage theorem.	(15)		
2.	(a) Prove that the No arbitrage option cost C is increasing in the initial p (OR)	rice s. (5)		
	(b) Define Stocks, Shares, call option and put option.	(5)		
	(c) Derive the Black Scholes no arbitrage option cost Formula.			
		(15)		
(OR)				
	(d) (i) Explain the Delta Hedging Arbitrage Strategy.(ii) State the put-call option parity formula.	(12+3)		
3. (a) Suppose that a security is presently selling for a price of 60, the nominal rate is 9% (with the time being one year) and the security's volatility is 0.35. Find the no arbitrage cost of a call that expires in three months and has a strike price 68. (OR)		·		
	and x ; if y is			
	invested, then y is either won or lost, with respective probabilities p a $p > 1/2$, how much should be invested by an investor having a log $p > 1/2$.	and $1 - p$. If		
	(c) Prove that in call options on dividend paying securities, for each share			
	amount D is to be paid at time t_d .	(15)		
	(OR)			
((d) Assuming a General Distribution for the size of a jump, prove that,			
	No – arbitrage cost = $E[C(s_t, J(t), K, \sigma, r)] \ge C(s, t, K, \sigma, r)$ and			
	No arbitrage option cost= $C(s,t,K,\sigma,r) + s_t^2 [e^{-\lambda t(1-E[J^2])} - e^{-2\lambda t(1-E[J])}]$	$\frac{1}{2s\sigma\sqrt{2\prod t}}e^{-w^2/2} $ (15)		

4.	(a) Explain in detail, the Expected Value at Risk.	(5)	
	(OR)		
	(b) Derive the formula for eta_i in the Capital Assets pricing model.	(5)	
	(c) Suppose that three investment projects with the following return	functions are available	
	$(i) f_1(x) = \frac{10x}{1+x}, x = 0,1,$ $(ii) f_2(x) = \overline{x}, x = 0,1,$		
	$(iii)f_3(x) = 10(1 - e^{-x}), x = 0.1$ When we will yield maximum return	for we have 5 to invest.	
		(15)	
	(OR)		
	(d) Estimate the volatility parameter when the collection prices follow Geometric Brownian motion.		
		(15)	
5.	(a) Explain Asian and Lookback Options.		
(OR)			
	(b) Explain the Gambling model with Unknown Win Probabilities.	(5)	
	(c) Derive the Expectation and Variance of Present value gain by using Mean Variance		
	analysis of Risk Neutral Priced call option.	(15)	
	(OR)		
	(d) Derive the pricing Exotic options by simulation.	(15)	
