LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER - NOVEMBER 2016

MT 4203 - ADVANCED MATHEMATICS FOR PHYSICS

Date:	11-11-2016	
Time	01.00-04.00	

Dept. No.

Max.: 100 Marks

Part A

Answer ALL the questions

 $(10 \times 2 = 20)$

- 1. Evaluate $\int \frac{dx}{a^2 x^2}$.
- 2. Define Fourier series.
- 3. Solve $(D^2 + 5D + 6) y = 0$.
- 4. Write down the transformation from Cartesian to polar co-ordinates.
- 5. Find the particular integral of $(3D^2 + D 14)y = 13e^{2x}$
- 6. State the relation between Beta and Gamma function.
- 7. Prove that the vector $\bar{f} = (x+3y)\bar{\iota} + (y-3z)\bar{\iota} + (x-2z)\bar{k}$ is solenoidal.
- 8. State Stokes theorem.
- 9. Define group.
- 10. Define Kronecker's delta.

Part B

Answer any FIVE questions

 $(5 \times 8 = 40)$

- 11. Evaluate $\int x^3 \cos 2x \, dx$.
- 12. Find a sine series for f(x) = x in the range 0 to π .
- 13. Solve $(D^2 + D + 1) y = x^2$.
- 14. Solve $\frac{dy}{dx} + y \cos x = \frac{1}{2} \sin 2x$.
- 15. Evaluate $\iint_R x y \, dx \, dy$, where R is the region in the first quadrant bounded by the hyperbolas $x^2 y^2 = a^2$ and $x^2 y^2 = b^2$ and the circles $x^2 + y^2 = c^2$ and $x^2 + y^2 = d^2$ (0 < a < b < c < d).
- 16. Solve $dy y dx = \sqrt{x^2 + y^2} dx$.
- 17. If $\overline{F} = xy^2\overline{\iota} + 2x^2yz\overline{\iota} 3yz\overline{k}$, find div \overline{F} and curl \overline{F} at (1, -1, 1).
- 18. Prove that $\{1, -1, i, -i\}$ is an abelian multiplicative finite group of order 4.

Part C

Answer Any **TWO** Questions.

$$(2 \times 20 = 40)$$

- 19. (a) Find the Fourier series to the function $f(x) = \frac{1}{2} (\pi x)$ in the interval (0.2π) .
 - (b) Derive the relationship between Beta and Gamma functions.

(12 + 8)

- 20. Solve $(D^2 + 4D + 5)y = e^x + x^3 + \cos 2x$.
- 21.(a) Evaluate $\iint xy \, dx \, dy$ taken over the positive quadrant of the circle $x^2 + y^2 = a^2$.

- (b) Change the order of integration and evaluate $\int_{0}^{4a} \int_{x^2/}^{4a} dy dx$. (10 + 10
- 22.(a) Verify Green's theorem for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$ where C is the boundary of the region x = 0, y = 0, x + y = 1.
 - (b) Define cyclic group and prove that every cyclic group is abelian. (12 +8)