

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **CHEMISTRY**

FOURTH SEMESTER - NOVEMBER 2016

MT 4204 - ADVANCED MATHS FOR CHEMISTRY

Date: 11-11-2016 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART A

Answer ALL the questions.

 $(10 \times 2 = 20)$

- 1. Show that $\beta(m,n) = \beta(n,m)$.
- 2. Find (4).
- 3. Find the Laplace transform of t^3 .
- 4. Show that $\vec{A} = 3y^4z^2\vec{\imath} + 4x^3z^2\vec{\jmath} 3x^2y^2\vec{k}$ is solenoidal.
- 5. Define a reciprocal equation.
- 6. Find the sum and product of the roots of equation $3x^3 + 6x^2 + 12x + 15 = 0$.
- 7. If the regression coefficient of Y on X is 0. 665 and the regression coefficient of X on Y is 0. 54, then what is the coefficient of correlation?
- 8. Write the normal equation of the curve $Y = a + bX + cX^2$.
- 9. State the formula for Newton's forward interpolation.
- 10. Find the range in which the real root of equation $x^2 5x + 2 = 0$ lies.

PART B

Answer any FIVE questions.

 $(5\times8=40)$

- 11. By changing the order of integration, evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$.
- 12. Evaluate $\int \frac{x^2y^2}{x^2+y^2} dxdy$ over the annular region between the circles $x^2 + y^2 = a^2$, $x^2 + y^2 = b^2$ (b > a).

13. Find the Laplace transform of

$$f(t) = \begin{cases} e^t & 0 < t < 1 \\ 0 & t > 1 \end{cases}$$

- 14. Find $L^{-1}\left(\frac{s}{(s^2+a^2)^2}\right)$
- 15. Show that the roots of the equation $x^3 + px^2 + qx + r = 0$ are in arithmetic progression if $2p^3 9pq + 27r = 0$.
- 16. Find the directional derivative of $\varphi(x,y,z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the vector $\vec{\imath} + 2\vec{\jmath} + 2\vec{\imath} \vec{k}$.
- 17. Calculate the correlation of coefficient for the following data:

_	X	65	66	67	67	68	69	70	72
	Y	67	68	65	68	72	72	69	71

18. Solve the system of equation using Cramer's rule:

$$x + 2y + 3z = 10$$
, $2x - 3y + z = 1$, $3x + y - 2z = 9$.

PART C

Answer any TWO questions:

 $(2 \times 20 = 40)$

- 19. a) Find the volume of solid bounded by the surface x = 0, y = 0, z = 0, x + y + z = 1.
 - b) Prove that $\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$. (10 + 10)
- 20. a) Find $L(t^2e^{-3t})$.
 - b) Using Laplace transform, solve the differential equation y'' + 2y' 3y = sint given that y(0) = y'(0) = 0. (5+15)
- 21. a) Solve the equation $6x^5 x^4 43x^3 + 43x^2 + x 6 = 0$.
 - b) If $\varphi(x, y, z) = x^2 y^3 z^4$, find divgrad φ and curlgrad φ . (12 + 8)
- 22. a) Solve using Gauss Seidel method:

$$28x + 4y - z = 32$$
, $x + 3y + 10z = 24$, $2x + 17y + 4z = 35$.

b) Find the root of $4x - e^x = 0$ that lies between 2 and 3 correct to 4 decimal places.

(12 + 8)