LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FOURTH SEMESTER - NOVEMBER 2016

MT 4502/MT 4500 - MODERN ALGEBRA

Date: 04-11-2016	Dept. No.	Max. : 100 Marks

Time: 01:00-04:00

PART - A

ANSWER ALL QUESTIONS

 $(10 \times 2 = 20)$

- 1. Define one-to-one correspondence between two sets A and B. Give an example.
- 2. State the Fundamental Theorem of Arithmetic.
- 3. Define order of an element of a group.
- 4. Define cyclic group and give an example.
- 5. Define automorphism of a group with an example.
- 6. Define odd and even permutation.
- 7. Define a division ring.
- 8. What is a field?
- 9. Define maximal ideal.
- 10. State Unique factorization theorem.

PART - B

ANSWER ANY FIVE QUESTIONS.

 $(5 \times 8 = 40)$

- 11. Show that the set Q^+ of all positive rational numbers form a group under the operation * defined by a*b = ab/2 for all a, b in Q^+ .
- 12. If H and K are subgroups of a group G, then prove that HK is a subgroup of G if and only if HK = KH.
- 13. Let G be a cyclic group of order n with generator a, then show that a^m is also a generator of G if and only if m and n are relatively prime.
- 14. Show that any infinite cyclic group G is isomorphic to the group Z of integers under addition.
- 15. Let G be a group. Prove that I(G), the set of all inner automorphisms of G, is a normal subgroup of A(G), the group of all automorphisms of G.
- 16. Show that the set of all 2 X 2 matrices over integers is an infinite noncommutative ring with unity.
- 17. Prove that the intersection of two subfields of a field F is a subfield of F.
- 18. Prove that every field is a PID.

PART - C

ANSWER ANY TWO OUESTIONS.

 $(2 \times 20 = 40)$

- 19. a. Find the group of all symmetries of an equilateral triangle.
 - b. If H and K are finite subgroups of a group G, then prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$
- 20. a. State and prove Lagrange's theorem.
 - b. State and prove Fundamental Homomorphism Theorem for groups.
- 21. a. Let R be a commutative ring with unit element whose only ideals are (0) and R itself. Then prove that R is a field.
 - b. If p is prime then prove that Z_p is a field.
- 22. a. Prove that the characteristic of an integral domain D is either zero or a prime number.
 - b. State and prove the Unique Factorization theorem on a Euclidean ring.
