LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FOURTH SEMESTER - NOVEMBER 2016

MT 4503 - ALGEBRAIC STURUCTURE - I

Date: 04-11-2016	Dept. No.	Max. : 100 Mark
	<u> </u>	

Time: 01:00-04:00

PART - A

Answer **ALL** the questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Define an equivalence relation and give an example.
- 2. Prove that in a group G, the identify element is unique.
- 3. Show that every cyclic group is abelian.
- 4. Define a normal subgroups of a group.
- 5. State the fundamental homomorphism theorem.
- 6. It G is a group of order 2, prove that the only automorphism of G is the identify map.
- 7. Define an integral domain.
- 8. Give an example of a subring in a ring R, Which is not an ideal of R.
- 9. Give an example of an Euclidean ring.
- 10. What are Gaussian integers?

PART - B

Answer any **FIVE** questions:

 $(5 \times 8 = 40 \text{ marks})$

- 11. Prove that if H and K are subgroups's of G, then HK is a subgroup of G if and only if HK = KH.
- 12. Show that every subgroup of a cyclic group is cyclic.
- 13. Show that every group of prime order is cyclic.
- 14. State and prove Lagrange's theorem.
- 15. Prove that any permutation of a finite set can be expressed as a product of transpositions.
- 16. Show that every finite integral domain is a field.
- 17. Show that every Euclidean ring is a principal ideal domain.
- 18. Find a greatest common division of a = 14 3i and b = 4+7i and represent in the form $\lambda a + \mu b$ in Z(i).

PART - C

Answer any **TWO** questions:

 $(2 \times 20 = 40 \text{ marks})$

- 19. a) Let H and K are subgroups of G, Show that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.
 - b) Show that union of two subgroups of a group G is a subgroup of G if and only if one is contained in the other. (12+8)
- 20. a) Show that every subgroups of an abelian subsgroup is normal.
 - b) Is the intersection of two normal subgroups of G a normal subgroup of G? Justify.
 - c) State and prove the fundamental theorem of group homomorphism.

(4+4+12)

- 21. a) Prove that every group is isomorphic to a group of permutations.
 - b) If R is a commutative ring with unit element whose only ideals are (0) and R itself, show that R is a field. (10 + 10)
- 22. a) Let R be a commutative ring work unity and P an ideal of R. Then prove that P is a prime ideal of R of and only if R/P is an integral domain.
 - b) If a = 14 3i and b = 4 + 7i, find Gaussian integers q and r such that a = q b+r, where r = 0 or d(r) < d(b). (12 + 8)
