LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2016

MT 5406 - COMBINATORICS

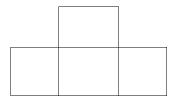
Date: 09-11-2016	Dept. No.	Max. : 100 Marks
Time: 09:00-12:00		1

SECTION-A

ANSWER ALL THE QUESTIONS

 $(10 \times 2=20)$

- 1. What is called an n-letter word or word of length n?
- 2. State exclusion principle.
- 3. Find the sequence of ordinary generating functions $2x^2(1-x)^{-1}$ and $(3+x)^3$.
- 4. Define exponential generating functions?
- 5. State multinomial theorem.
- 6. Find the coefficient of $x_1^2 x_3 x_4^3 x_5^4 \ln(x_1 + x_2 + x_3 + x_4 + x_5)^{10}$.
- 7. Find the rook polynomial for the chess board c given below



8. Define Euler's

function?

- 9. Define G-equivalence between two sets?
- 10. Define circular words of length n?

SECTION-B

ANSWER ANY FIVE QUESTIONS

 $(5 \times 8=40)$

- 11. There are 30 females, 35 males in a junior class while there are 25 females and 20 males in a senior class. In how many ways can a committee e of 10 be chosen, so that there are exactly 5 females and 3 juniors in the committee?
- 12. Formulate a table for S_n^m for $1 \le m \le 51 \le n \le 5$, using sterling formula of first kind.
- 13. Derive Pascal's identity using the concept of generating functions?
- 14. Derive the formula for the sum of n natural numbers using recurrence formula.
- 15. Determine the coefficient of x^{27} in (i) $(x^4 + x^5 + x^6 +)^5$;

(ii)
$$(x^4 + 2x^5 + 3x^6 + \dots)^5$$
.

- 16. Define permanent of a matrix and find the permanent of $B = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 1 \end{bmatrix}$
- 17. Find the rook polynomial for 4X4 chess board by the use of expansion formula.
- 18. State and prove Polya's enumeration theorem?

SECTION-C

ANSWER ANY TWO QUESTIONS

(2x 20=40)

- 19. a) Prove that the number of distributions of n distinct objects into m distinct boxes with the objects in the each box arranged in a definite order is $[m]^n$.
 - b) Define stirling numbers of second kind. Formulate a table for s_n^m for $1 \le m, n \le 6$. (10+10)
- 20. a) State and prove Sieves formula.
 - b) How many integers 1 and 300 are divisible by (i) at least 3, 5, 7; (ii) 3 and 5 but not 7; (iii) 5 but neither by 3 nor 7. (12+8)
- 21. State and solve ménage problem.
- 22. a) Let G be symmetric group of a square with vertices labeled as 1,2,3&4 clockwise find the elements of G and the cycle index of G.
 - b) State and prove Burnside Frobenius theorem.

(10+10)
