LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2016

MT 5507/MT 5504 - OPERATIONS RESEARCH

Date: 03-11-2016 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

PART - A

ANSWER ALL QUESTIONS

 $(10 \times 2 = 20 \text{ marks})$

- 1. Define optimal feasible solution.
- 2. What are the essential characteristics of operations research?
- 3. What is transportation problem?
- 4. What is an unbalanced assignment problem?
- 5. Define saddle point in a game.
- 6. What types of games are solved graphically?
- 7. Write any two differences between PERT and CPM.
- 8. Define critical path in a network.
- 9. What is Economic order quantity?
- 10. What is shortage cost?

PART - B

ANSWER ANY FIVE OUESTIONS.

 $(5 \times 8 = 40 \text{ marks})$

- 11. Solve graphically: Minimise $z = 5x_1 + 4x_2$ subject to the conditions $x_1 2x_2 \le 1$, $x_1 + 2x_2 \ge 3x_1$, $x_2 \ge 0$.
- 12. Solve by simplex method: Maximise $z = x_1 + 2x_2 + x_3$ subject to the conditions

$$2x_1 + x_2 - x_3 \le 2, -2x_1 + x_2 - 5x_3 \ge -6, 4x_1 + x_2 + x_3 \le 6, x_1, x_2, x_3 \ge 0$$
.

13. Find an initial solution by North West Corner Rule method:

	D_1	D_2	D_3	
S_1	6	10	15	2
S_2	4	6	16	5
S_3	12	5	8	9
	1	8	7	16

14. Solve the assignment problem:

	M_1	M_2	M_3	M_4
J_1	5	26	13	15
J_2	3	9	18	3
J_3	10	7	3	2
J_4	5	11	9	7

15. Solve the following game:

	B_1	B_2	B_3	B_4
A_1	1	7	3	4
A_2	5	6	4	5
A ₃	7	2	0	3

16. Solve the following game using graphical method

$$\begin{array}{c|cccc}
-6 & 7 \\
4 & -5 \\
-1 & 2 \\
-2 & 5 \\
7 & -6
\end{array}$$

- 17. Discuss the shortest route problem.
- 18. The demand for an item is 100 units per day. For placing an order a cost of Rs.400 is incurred. Unit Cost is Rs.10. Holding cost is Rs.0.08 per day. Determine the EOQ and time between two orders.

$$PART - C$$

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40 \text{ marks})$

- 19. Solve by Big-M method: Maximize $z=x_1+2x_2$ subject to the conditions $x_1-x_2\geq 3, \ 2x_1+x_2\leq 10, \ x_1,x_2\geq 0$.
- 20. Solve the following transportation problem:

	M_1	M ₂	M ₃	M ₄	
\mathbf{W}_1	8	10	7	6	50
W_2	12	9	4	7	40
W ₃	9	11	10	8	30
	25	32	40	23	120

21. a) Solve the following game:
$$\begin{pmatrix}
5 & -10 & 9 & 0 \\
6 & 7 & 8 & 1 \\
8 & 7 & 15 & 1 \\
3 & 4 & -1 & 4
\end{pmatrix}$$

- b) What is the maximal flow problem? Explain in detail with diagram.
- c) What is the difference between transportation and assignment problem? (14+3+3

- 22. a) What is price break in inventory control? Is it advisable to accept always the price break?
 - b) Define spanning tree in a network.
 - c) Find the critical path of a project having the tasks as given below:

Job	Time	Job	Time
(1, 2)	2	(5, 8)	5
(2, 3)	7	(6, 7)	8
(2, 4)	3	(6, 10)	4
(3, 4)	3	(7, 9)	4
(3, 5)	5	(8, 9)	1
(4, 6)	3	(9, 10)	7

(3+3+14)

\$\$\$\$\$\$\$