LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2016

MT 5508/MT 5502 - LINEAR ALGEBRA

Date: 17-11-2016	Dept. No.	Max. : 100 Marks
	L	

Time: 09:00-12:00

PART - A

Answer ALL questions:

 $(10 \times 2 = 20 \text{ marks})$

- 1. Show that the vectors (0,1,1), (0,2,2) and (1,5,3) in \mathbb{R}^3 are linearly independentent over \mathbb{R} .
- 2. Is the union of subspaces a subspace? Justify.
- 3. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$, where U and V are vector spaces over a field F.
- 4. For a homomorphism T: $V \rightarrow V$, prove that Kernal of T is a subspace of V.
- 5. Define an inner product space.
- 6. Let $T \in A(V)$ and $\lambda \in F$. If λ is an eigen value of T, prove that $\lambda I T$ is singular.
- 7. Show that the matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is orthogonal.
- 8. If A and B are Hermitian, then show that AB BA is skew Hermitian.
- 9. If $T \in A(V)$ is Hermitian, then show that all its eigen values are real.
- 10. Find the rank of the matrix $A = \begin{pmatrix} 1 & 5 & -7 \\ 3 & 8 & 5 \end{pmatrix}$ over the field of rational numbers.

PART - B

Answer any FIVE questions:

 $(5 \times 8 = 40 \text{ marks})$

- 11. Prove that the intersection of two sub-spaces of a vector space V is a subspace of V.
- 12. Give a characterization of a nonempty subset W of a vector space V over F to be a subspace of V.
- 13. Express the vector (1,-2,5) as a linear combination of the vectors (1,1,1), (1,2,3) and (2,-1,1) in \mathbb{R}^3 .
- 14. If V is a vector space of finite dimension and W is a subspace of V, then prove that

 $\dim V/W = \dim V - \dim W'$

- 15. For any two vectors u, v in V, prove that $||u+v|| \le ||u|| + ||v||$.
- 16. Show that T: $R^2 \rightarrow R^2$ depend by T (a, b) = (a+b, a) is a vector space homomorphism.
- 17. Show that any square matrix can be expressed as a sum of a symmetric matrix and a skew symmetric matrix.
- 18. Show that the system of equations

$$x_1 + 2x_2 + x_3 = 11$$
, and $4x_1 + 6x_2 + 5x_3 = 8$ and $2x_1 + 2x_2 + 3x_3 = 19$ is inconsistent.

Answer any TWO questions:

 $(2 \times 20 = 40 \text{ marks})$

- 19. If W_1 and W_2 are subspaces of a finite dimensional vector space, then prove that dim (W_1+W_2) =dim W_1 + dim W_2 -dim $(W_1 \cap W_2)$.
- 20. If U and V are vector spaces over F and it T : U \rightarrow V is a homomorphism with kernel W, then prove that U/W \cong V.
- 21. Apply the Gram Schmidt orthonomalization process to obtain an orthonormal basis for the subspace of \mathbb{R}^4 generated by the vectors (1, 1, 0, 1), (1, -2, 0, 0) and (1, 0, -1, 2).
- 22. a) Prove that the linear transformation T on V is unitary it and only it takes an orthonormal basis of V onto an orthonormal basis of V.

b) Solve
$$x_1 + 2x_2 + x_3 + 5x_4 = 3$$

 $x_1 + 2x_2 + 2x_3 + 7x_4 = 4$
 $x_3 + 2x_4 = 1$
 $x_1 + x_2 + 3x_4 = 2$ (10+10)
