LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION -MATHEMATICS

THIRD SEMESTER - NOVEMBER 2017

16PMT3ES02- DIFFERENTIAL GEOMETRY

	Date: 10-11-2017 Dept. No. Max. : 100 Time: 09:00-12:00) Marks	3
	Answer all the questions		
١.	. (a) Show that the ratio of the arc and the chord connecting two points P and Q on a curve unity when Q approaches P. (OR)	(5)	
	(b) Obtain the equation of the tangent at a point on the curve of intersection of tw $f_1(x, y, z) = 0$ and $f_2(x, y, z) = 0$.	wo surfa (5)	ices
	(c) Derive the equation of the osculating plane at the point on the space curve and her equation of the osculating plane for the vector $\vec{r} = (u, u^2, u^3)$. (OR)	nce find (15)	the
	(d) (i) Show that the tangent at the point of the curve of intersection of the ellipsoid and to conic with parameter λ is given by $\frac{x(X-x)}{a^2(b^2-c^2)(a^2-\lambda)} = \frac{y(Y-y)}{b^2(c^2-a^2)(b^2-\lambda)} = \frac{z(Z-z)}{c^2(a^2-b^2)(c^2-\lambda)}$.	he confo	ocal
	(ii) Find the length of the circular helix $\vec{r} = a\cos u \vec{i} + a\sin u \vec{j} + bu \vec{k}$, $-\infty < u < \infty$ variable point $(a, 0, 0)$ to $(a, 0, 2\pi b)$. Also obtain the equation in terms of parameter s .	ies from (10-	
2.	. (a) Show that if the circle $lx + my + nz = 0$, $x^2 + y^2 + z^2 = 2cz$ has three point of coorigin with the paraboloid $ax^2 + by^2 = 2z$ then $c = \frac{l^2 + m^2}{bl^2 + am^2}$. (OR)	ntact at	the
	(b) Derive the equation of an involute of a space curve.		(5)
	(c) State and prove fundamental theorem of space curves.	(15)	
	(OR)		
	(d) Derive the Riccati equation from the general solution to the natural equations of a space c	urve. (15)	
8.	. (a) Define envelope, developable surface, essential singularity and artificial singularity.	` /	(5)
	(OR)		<i>(</i> - \
	(b) Find the angle between two curves lying on a surface at a point of intersection of two cur(c) Explain the first fundamental form of a surface and give its geometrical interpretation.	ves. (15)	(5)
	(OR) (d) Derive the equation of polar and tangential developables associated with a surface.	(15)
ŀ.	. (a) State and prove Meusnier's theorem.	(5)	
	(b) Find the principal curvature and principal direction at any point on a surface $x = a(u + v), y = a(u - v), z = uv.$ (5)		

(c) (i) Find the first fundamental form and the second fundamental form of the curve $x = a$ $y = a \sin\theta \sin \varphi$, $z = a \cos \varphi$.	$cos\theta sin\varphi$,			
(ii) With usual notations, prove that the necessary and sufficient condition that the lines of may be a parametric curve is that $f = 0$ and $F = 0$. (OR)	of curvature (10+5)			
(d) (i) Derive the equation satisfying principal curvature at a point on a surface.	(7+8)			
	(5)			
(OR) (b) Prove that in a region R of a surface of constant positive Gaussian curvature without un principal curvature take their extreme values at the boundary.	mbilics, the (5)			
(c) Derive Gauss equation in terms of Christoffel's symbol. (OR)	(15)			
(d) State the fundamental theorem of Surface Theory and demonstrate it in the case of unit sphere. (15)				
