LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

LUCEAT LIA VESTIO

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2017

16PMT3MC01/MT3810 - TOPOLOGY

Date:01-II-2017 Time: 09:00-12:00	Dept. No.		Max. : 100 Marl	ks
Answer all the questions.				
I. a)1) Let X be a	metric space. Prove t	hat arbitrary union of op OR	pen sets is open.	
a)2) Let X be a metri	c space. Prove that an	y finite intersection of o	open sets is open.	(3)
b)2) Let X and Y be r	Cantor's intersection the metric spaces and f a number of a penever G is open in Y	napping of X into Y. Th	en prove that f is conti	nuous
of X. If f is uniformly	ric space and let Y be	a complete metric space of A into Y then prove to Y.		-
	opological space and g	give an example. OR topological space becor	me a metrizahle snace?	l Under
	every topological space		ne a metrizable space.	(3)
b)1) State and prove I b)2) State and prove I	Lindelof's theorem. Lebesgue's covering le	emma. OR		(7+10)
c) Prove that a topolo	ogical space is compac	et if every subbasic oper	n cover has a finite sub	cover. (17)
III. a)1) Prove that	every compact subsp	ace of a Hausdorff spac	e is closed.	
a)2) Prove that a one homeomorphism.	to one continuous ma	pping of a compact space	ce onto a Hausdorff spa	ace is a (3)
b) State and prove Tie	etze extension theorem	n. OR	((17)
c) State and prove Ur	ysohn Embedding the			(17)

IV. a)1) Prove that a topological space X is disconnected iff there X onto the discrete two-point space {0,1}.	e exists a continuous mapping of
a)2) Prove that any continuous image of a connected space is connected.	cted. (3)
b)1) Prove that the subspace of a real line is connected iff it is an int connected.	erval also prove that ⊔ is
b)2) Prove that the spaces \square and \square are connected.	(9+8)
OR	
c)1) Prove that the product of any non-empty class of connected spac)2) Let X be a compact Hausdorff space. Prove that X is totally dis whose sets are also closed.	
V. a)1) State complex Stone-Weierstarss theorem. OR	
a)2) Prove that X_{∞} is Hausdorff.	(3)
b)State and prove Weierstrass approximation theorem. OR	(17)
c) State and prove Real Stone Weierstrass theorem.	(17)
\$\$\$\$\$\$\$	