LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - NOVEMBER 2017

17/16PMT1MC04- COMPUTER ALGORITHMS

	ate: 10-11-2017 me: 01:00-04:00	Dept. No.		Max. : 100 Marks	3
Δ,	nswer ALL the Questions				
Л	iswer ALL the Questions	•			
1.	· · · · · · · · · · · · · · · · · · ·			debugging, profiling, pe (5)	rformance
	OR b) The factorial function $n!$ has value 1 when $n \le 1$ and value $n * (n - 1)!$ when $n > 1$. Write an iterative algorithm to compute $n!$. Also calculate the time complexity. (5)				
	c) (i) What is a priority qu (ii) State a procedure to	<u>-</u>	le. em from a queue and sta OR	ck. (3+12)	
	d) Write algorithm HEAF	PIFY. Simulate A(1 : '	011	54, 89). (15)	
2.	a) Give the control abstra	ction for divide and c	-	(5)	
	b) State the algorithm to t	and the k^{th} smallest el	OR lement.	(5)	
	c) State algorithm MergeSort. Simulate it on $A(1:7) = (45, 24, 37, 15, 70, 82, 12)$. Draw tree of calls of MergeSort when $n = 7$. (15)				
	0.777		OR		
	d) Write algorithm QUIC $A(1:10) = (65, 70, 74)$			(15)	
3.	a) If $p_1/w_1 \ge p_2/w_2 \ge \cdots \ge p_n/w_n$, then prove that the algorithm GreedyKnapsack generates an optimal solution to given instance of the Knapsack problem. (5) OR				
	b) Explain optimal stora	ge on tanes with an ex		(5)	
	c) State greedy algorithm when $n = 5$, $(p_1, p_2, p_3,$	for sequencing unit j	obs with deadlines and p	· /	solution
	$(d_1, d_2, d_3, d_4, d_5) = (2,$		OR	(15)	
	d) Explain the problem 'd tree. Find binary merg 12, 5, 84, 53, 91, 35, 3	ge tree with minimum	rn'. State an algorithm n weighted external path (15)	_	
4.	a) State a recursive backtr	cacking algorithm.	OR	(5)	
	b) Explain inorder, preord c) Apply backtracking me queen in column <i>i</i> of a	ethod, to find a solution	ersals with examples.		
			OΙ		

- d) State algorithm SumOfSub. Let $w = \{5,7,10,12,15,18,20\}$ and m = 35. Find all possible subsets of w that sums to musing SumOfSub. (15)
- 5. a) Explain 3-SAT problem? State Cook's theorem.

(5)

- b) Let A[i], $1 \le i \le n$ be an unsorted array of positive integers. State a nondeterministic algorithm which sorts the numbers into nondeceasing order. (5)
- c) Explain node cover decision problem with an example. Determine the minimum node cover for the following graph.

Prove that the node cover decision problem is NP-Complete.

(15)

OR

d) Explain the maximum clique problem with an example. Prove that CNF-satisfiability reduces to clique decision problem. (15)
