LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - NOVEMBER 2017

7/16PMT1MC05- PROBABILITY THEORY AND STOCHASTIC PROCESS

Date: 14-11-2017 Time: 09:00-12:00		Dept. No.						Max. : 1	Max.: 100 Marks	
			Ans	swer A	\LL qı	uestion	s:			
1.	probability density function	A random variable X is distributed at random between the values 0 and 1 so that its obability density function is $f(x) = kx^2(1-x^3)$, where k is a constant. Find the value k . Using this value of k , find its mean and variance. (5)								
	(b) A random variable has the following probability function:									
	Values of X, x 0 1 2 3 4 5 6 7									
	P(x)	0 k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$		
	(i) Find k, (ii) Evaluate $P(X < 6)$ (iii) If $P(X \le a) > \frac{1}{2}$, find the minimum value of a.									
	(5)									
	(c) Let (X, Y) be a two dimensional random variable uniformly distributed over the									
	triangular region bounded by $y = 0$, $x = 3$ and $y = \frac{4}{3}x$. Obtain the correlation									
	coefficient between X and Y . (15)									
	(d) Two ideal dice are thrown. Let X_1 be the score of the first die and X_2 the score on the second die. Let Y denote the maximum of X_1 and X_2 . (i) Write down the joint distribution of Y and X_1 , and (ii) Find the mean and variance of Y and covariance (Y, X_1) . (15)									
2.	(a)State and prove Chebychev's inequality. (5)									
	(OR) (b) Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that $P(X-7 \ge 3) \le 1$									
	$\frac{35}{54}$. Compare this with the actual probability. (5)								- (1 1) -	
	(c) State and prove weak law of large numbers.								(15)	
	(OR)									
	(OK)									
	(d) State and prove two Borel-Cantelli Lemmas.							(15)		
3.	(a)Obtain the minimum variance bound (MVB) estimator for μ in normal population $N(\mu, \sigma^2)$, where σ^2 is known. (OR)							(5)		
	(b) State and prove invariance property of Consistent Estimators.							(5)		

(c) If T_1 and T_2 are minimum variance unbiased (M. V. U.) estimators for $\gamma(\theta)$, then prove that $T_1 = T_2$, almost surely. (15)

(OR)

- (d) (i) If a sufficient estimator exists then prove that it is a function of Maximum Likelihood Estimator.
- (ii) Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n. Also find its variance. (7+8)
- 4. (a) Explain Critical Region and two types of Errors.

(OR)

- (b) Let p be the probability that a coin will fall with up head in a single toss in order to test H_0 : $p=\frac{1}{2}$ against H_1 : $p=\frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find the probability of type I error and power of the test. (5)
- (c) Let $X \sim N(\mu, 4)$, μ unknown. To test H_0 : $\mu = -1$ against H_1 : $\mu = 1$, based on a sample of size 10 from its population, we use the critical region: $x_1 + 2x_2 + \cdots + 10x_{10} \ge 0$. What is its size?. What is the power of the test?

(15)

(15)

(5)

(OR)

- (d) State and prove Neyman-Pearson Lemma.
- 5.(a) Explain the four different classes of stochastic processes. (5)

(OR)

(b) Explain the Birth and Death processes.

(5)

- (c) Prove that a homogeneous Markov chain $\{X_n\}$ satisfies the relation $p_{ij}^{(n+m)} = \sum_k p_{ik}^{(m)} p_{kj}^{(n)}$ for every $n, m \ge 0$ provided we define $p_{ij}^{(0)} = \delta_{ij}$, where $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \ne j \end{cases}$. (15)
- (d) If the initial vector $\mathbf{P}^{(0)}$ is given, then prove that the n -step transition probabilities are

 $P^{(n)} = P^{(0)}P^n, n = 1,2,....$ (15)
