
 

 

        LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 

M.Sc.DEGREE EXAMINATION 

FIRST

17/16PMT1MC05- PROBABILITY THEORY AND STOCHASTIC PROCESS

  
              Date: 14-11-2017 Dept. No.
              Time: 09:00-12:00  

 

1. (a) A random variable X is distributed at random between the values 0 and 1 so that its 
probability density function is 𝑓(𝑥) =

of  𝑘. Using this value of 𝑘, find its mean and variance.

   (b) A random variable has the following probability function:
Values of X, x 0 1
P(x) 0 k

 (i) Find k, (ii) Evaluate 𝑃(𝑋 <

     
   (c) Let (𝑋, 𝑌) be a two dimensional random variable uniformly distributed over the 

 triangular region bounded by 𝑦

 coefficient between 𝑋 and 𝑌. 

 (d) Two ideal dice are thrown. Let 𝑋ଵ

 second die. Let Y denote the maximum of 
 of Y and 𝑋ଵ, and (ii) Find the mean and variance of Y and covariance 

2. (a)State and prove Chebychev’s inequality.

(b) Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that  
ଷହ

ହସ
. Compare this with the actual probability. 

     (c) State and prove weak law of large numbers.

     (d) State and prove two Borel-Cantelli Lemmas. 

   

3. (a)Obtain the minimum variance bound (MVB) estimator for 
 𝑁(𝜇, 𝜎ଶ), where 𝜎ଶ is known.
     
(b) State and prove invariance property of Consistent Estimators.
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Answer ALL  questions: 
 

A random variable X is distributed at random between the values 0 and 1 so that its 
( ) = 𝑘𝑥ଶ(1 − 𝑥ଷ), where 𝑘 is a constant. Find the value 
its mean and variance.    

(OR) 
A random variable has the following probability function: 

1 2 3 4 5 6 7 
k 2k 2k 3k 𝑘ଶ 2𝑘ଶ 7𝑘ଶ + 𝑘 

( < 6)(iii) If 𝑃(𝑋 ≤ 𝑎) >
ଵ

ଶ
, find the minimum value of

       
be a two dimensional random variable uniformly distributed over the 

𝑦 = 0, 𝑥 = 3 and 𝑦 =
ସ

ଷ
𝑥. Obtain the correlation 

       
(OR) 

ଵ be the score of the first die and 𝑋ଶ the score on the 
second die. Let Y denote the maximum of 𝑋ଵand 𝑋ଶ. (i) Write down the joint distribution 

, and (ii) Find the mean and variance of Y and covariance (𝑌, 𝑋ଵ).      (15)
 

State and prove Chebychev’s inequality.      
(OR) 

Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that  

. Compare this with the actual probability.    (5) 

nd prove weak law of large numbers.     

(OR) 

Cantelli Lemmas.      

       

Obtain the minimum variance bound (MVB) estimator for 𝜇 in normal population 
is known.      

 (OR) 
State and prove invariance property of Consistent Estimators.  
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A random variable X is distributed at random between the values 0 and 1 so that its  
is a constant. Find the value  

 (5) 

, find the minimum value of a.  

 (5) 
be a two dimensional random variable uniformly distributed over the  

. Obtain the correlation  

 (15) 

the score on the  
. (i) Write down the joint distribution  

(15) 

 (5) 

Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that         𝑃(|𝑋 − 7| ≥ 3) ≤

  (15) 

  (15) 

  

in normal population  
  (5)  

  (5)  
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(c) If 𝑇ଵ and 𝑇ଶare minimum variance unbiased (M. V. U.) estimators for 𝛾(𝜃), then prove  
that  𝑇ଵ = 𝑇ଶ, almost surely.         (15) 

(OR) 
(d) (i) If a sufficient estimator exists then prove that it is a function of Maximum Likelihood 
Estimator. 

  (ii)  Find the maximum likelihood estimate for the parameter 𝜆 of a Poisson distribution on  

the basis of a sample of size n. Also find its variance.     (7+8)  

4. (a)  Explain Critical Region and two types of Errors.     (5) 
             

(OR) 
(b) Let p be the probability that a coin will fall with up head in a single toss in order to test 

𝐻଴: 𝑝 =
ଵ

ଶ
against𝐻ଵ: 𝑝 =

ଷ

ସ
 . The coin is tossed 5 times and 𝐻଴ is rejected if more than 3   

heads are obtained. Find the probability of type I error and power of the test. (5) 
 
(c) Let 𝑋~𝑁(𝜇, 4), 𝜇 unknown. To test 𝐻଴: 𝜇 = −1 against 𝐻ଵ: 𝜇 = 1, based on a sample of 
size 10 from its population, we use the critical region: 𝑥ଵ + 2𝑥ଶ + ⋯ + 10𝑥ଵ଴ ≥ 0. What is 
its size?. What is the power of the test? 

            (15) 
(OR) 

    (d) State and prove Neyman-Pearson Lemma.      (15) 
 

5.(a)Explain the four different classes of stochastic processes.     (5) 
      

(OR) 
(b) Explain the Birth and Death processes.       (5) 
  

(c) Prove that a homogeneous Markov chain {𝑋௡} satisfies the relation 𝑝௜௝
(௡ା௠)

= ∑ 𝑝௜௞
(௠)

𝑝௞௝
(௡)

௞  

for every 𝑛, 𝑚 ≥ 0 provided we define 𝑝௜௝
(଴)

= 𝛿௜௝ , where 𝛿௜௝ = ൜
1    𝑖𝑓 𝑖 = 𝑗
0    𝑖𝑓 𝑖 ≠ 𝑗 

 .  (15) 

              (OR) 
     (d)  If the initial vector 𝑷(଴) is given, then prove that the 𝑛 −step transition probabilities are  

 𝑷(௡) = 𝑷(଴)𝑷𝒏 , 𝑛 = 1,2, ….        (15) 
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