LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - NOVEMBER 2017

LUCEAT LUX VESTRA	MT 1816- REAL A	ANALYSIS	
Date: 04-11-2017 Time: 01:00-04:00	Dept. No.	Max. : 100 Marks	
Answer all the questions.			
1. a)Prove that $\int_{a_{-}}^{b} f d\alpha \le$	$\int_a^{b^-} f d\alpha$.		
` <i>'</i>	fundamental theorem of calculus ecessary and sufficient condition to		
(ii) Let $f \in \Re(\alpha)$ on [a,b]. Then prove the C. (a) State and prove the C.	we that $h \in \Re(\alpha)$ on [a, b].	the uous on [m,M] and $h(x) = \varphi(f(x))$ (6+9) ergence of sequence of functions.	
$\int_0^1 (\lim_{n \to \infty} f_n(x)) dx \neq \lim_n$	$\rightarrow \infty \int_0^\infty f_n(x) dx.$	(5)	
(c) State and prove the S	Stone-Weierstrass theorem.		
$x_0 \in [a, b]$ and $\{f_n\}$ converge on [a, b] to a function f and lin 3. (a) Let $S = \{\varphi_0, \varphi_1, \varphi_2\}$, }, where $\varphi_0(x) = \frac{1}{\sqrt{2\pi}}$, φ_{2n-1} orthnormal on any interval of length	that $\{f_n\}$ converges uniformly (15) $(x) = \frac{\cos nx}{\sqrt{\pi}} \text{ and } \varphi_{2n}(x) = \frac{\sin nx}{\sqrt{\pi}}, \text{ for n}$	= 1,
(b) State and prove the	OR e Bessel's Inequality.	(5)	
	Riesz-Fischer theorem.	(-)	
(ii) State and prove	Riemann-Lebesgue lemma. OR	(8+7)	
sequence $s_n(x) = \frac{a_0}{2} + \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t) + f(x)}{2}$ (ii) If $g(0+)$ exist that $\lim_{\alpha \to \infty} \frac{2}{\pi} \int_0^{\pi} \frac{f(x+t) + f(x)}{2}$ 4. (a)Prove that $L(R^n, R^m)$ $\frac{1}{2} R^m$ $\frac{1}{2} R^m$ $\frac{1}{2} R^m$ $\frac{1}{2} R^m$	$E \in L[0,2\pi]$ and suppose that f is of partial sums of the $\sum_{k=0}^{\infty} (a_k coskx + (b_k sinkx), \frac{x-t}{t}) D_n(t) dt$ where D_n is called I as and for some $\delta > 0$, the Lebesgue $g(t) = \frac{sin\alpha t}{t} dt = g(0+)$. Dis a metric space where the dispersion of $g(t) = \frac{sin\alpha t}{t} dt$.	n=1,2, Then prove that $s_n(x)$ Dirichlet's Kernel. the integral $\int_0^b \frac{g(t)-g(0+)}{t} dt$ exists, then prove that $s_n(x)$ is stance between A and B is defined as $s_n(x)$.	f, $f(x) = 0$ where $f(x) = 0$
(b) State and prove the	fixed point theorem.	(5)	

(c) Suppose f is a ζ' mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^n and $f'(a)$ is invertible for some $a \in E$ and $f(a) = b$. Then prove that there exists open sets U and V in \mathbb{R}^n such that $a \in U$, $b \in V$, f is one-to-one on U and $f(U) = V$. Also prove that if g is the inverse of f then $g \in \zeta'(V)$.				
OR (d) State and prove the implicit function theorem. 5. (a) Define heat flow and the heat equation.	(15)			
OR				
(b) Explain rectilinear coordinate system with algebraic and geometric approach. (5)				
(c) Derive the expression for Newton's Law of Cooling. (OR)				
(d) Derive the D' Alembert's wave equation for a vibrating string.	(15)			
\$\$\$\$\$\$\$ \$\$\$\$\$\$\$				