LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - MATHEMATICS

FIRSTSEMESTER - NOVEMBER 2017

MT 1817- ORDINARY DIFFERENTIAL EQUATIONS

	te: 08-11-2017 ne: 01:00-04:00	Dept. No.		Max. : 100 M	larks
An	swer all questions. Each	h question carries 20	marks.		
1.	(a) Is $c_1 t + c_2 t^2 + c_3 t^3$	$t, t \ge 0$ a solution of t	$t^3 x''' - 3t^2 x'' + 6tx' - 6tx'$ (OR)	$6x = 0? \qquad (5)$	
	(b) State and prove Abe	l's formula.	(OIC)	(5)	
	(c) Explain the method	of variation of parame	eters. (OR)	(15)	
2	coefficients.		econd order linear hom	(15)	with constant
2.	(a) State and prove Rod	rigue's Formula.	(OR)	(5)	
	(b) With usual notation, prove that (i) $P_l(1) = 1$, (ii) $P'_l(1) = l(l+1)/2$.				
	(c) Solve by Frobenius	method, $x(1-x)\frac{d^2y}{dx^2}$	$y + (1 - x)\frac{dy}{dx} - y = 0.$ (OR)	(15)	
	(d) Derive the orthogon	ality properties of the	Legendre's polynomial.	(15)	
3.	(a) Derive the generating	g function for Bessel'	s function. (OR)	(5)	
	(b) When n is a non-zer(c) State and prove the in			(5) (15)	
	(d) Derive the recurrence	ce relations for Bessel	()	(15)	
4.			ations, solve the initial va		
	x'(t) = -x(t), x(0)	$)=1,\ \iota\geq 0.$	(OR)	(5)	
(b) For distinct parameters λ and μ , let x and y be the corresponding solutions of the Stur					Sturm-Liouville
	problem such that []	$\partial W(x,y) _A^B = 0$. Prov	We that $\int_A^B r(s)x(s)y(s)ds$	s = 0. (5)	
	(c) State and prove Pica	ard's theorem for initia	al value problem. (OR)	(15)	
(d) Let $G(t,s)$ be the Green's function. Prove that $x(t)$ is a solution of $L(x(t))$					$a \le t \le b$ if and
	only if $x(t) = \int_a^b G(t)$	(t,s)f(s)ds.		(15)	
5.	(a) Explain asymptotica			(5)	
			(OR)		
	(b) Prove that the null solution of equation $x' = A(t)x$ is stable if and only if a such that $ \phi(t) \le k, t \ge t_0$.			only if a positive c (5)	onstant k exists
		· ·	xby Lyapunov's method. (OR)	(15)	
	(d) State and prove the	ıtonomous systems	s. (15)		
