LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -**MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2017

MT 5505- REAL ANALYSIS

Date: 10-11-2017 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

SECTION - A

Answer ALL questions:

 $(10 \times 2 = 20)$

- 1. Give an example of a subset of real numbers which is not order complete.
- 2. Differentiate countable and uncountable sets.
- 3. Define interior point of a set in a metric space.
- Give an example of a countable collection of open sets whose intersection is not open in a metric space.
- 5. When do you say that a function has a removable discontinuity at a point c?
- 6. Give an example of a continuous function which is not uniformly continuous.
- 7. Define (i) strictly increasing function and (ii) strictly decreasing function.
- 8. Define local minimum and local maximum of a function at a point.
- 9. Give an example of a function which is not Riemann integrable.
- 10. Define telescoping series.

SECTION - B

Answer any FIVE questions:

 $(5 \times 8 = 40)$

- 11. If n ϵ N and n is not the square of any integer, show that \sqrt{n} is irrational.
- 12. Show that subset of a countable set is countable.
- 13. Let Y be subspace of a metric space (X,d). Show that a subset A of Y is open in Y if and only if $A = Y \cap G$ for some open set G in X.
- 14. Prove that Euclidean space R^k is complete.
- 15. State and prove Rolle's Theorem.
- 16. State and prove Bolzano theorem.
- 17. State and prove intermediate value theorem for derivatives.
- 18. Show that a function f of bounded variation on [a,b] is bounded on [a,b].

SECTION - C

Answer any TWO questions:

 $(2 \times 20 = 40)$

19 (a) Show that countable union of countable sets are countable.

(b) If
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$
, show that e is irrational. (10+10)

- 20 (a) Show that arbitrary union of open sets is open and finite intersection of open sets is open.
 - (b) Show that every convergent sequence is Cauchy but not conversely. (10+10)
- 21 (a) If f and g are continuous functions at $x_0 \varepsilon X$ show that fg is also continuous at x_0 and if $f(x_0) \neq 0$ show that 1/f is continuous at x_0 .
- (b) Define uniformly continuous function. Let X be a compact metric space, Y be a metric space and $f: X \to Y$ be continuous. Show that f is uniformly continuous.

(10+10)

22(a) State and prove Taylor's theorem.

(b) If f, g $\varepsilon R(\alpha)$ on [a, b], show that for constants λ , μ , $\lambda f + \mu g \varepsilon R(\alpha)$ on [a, b] and $\int_a^b (\lambda f + \mu g) dx$

$$\mu g)d\alpha = \lambda \int_a^b f d\alpha + \mu \int_a^b g \, d\alpha. \tag{10+10}$$
