LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2017

MT 5508 / MT 5502 - LINEAR ALGEBRA

Date: 08-11-2017 Dept. No. Max. : 100 Marks

Time: 09:00-12:00

PART A

ANSWERALL THE QUESTIONS

(10 * 2 = 20 marks)

- 1. Define a vector space over a field F
- 2. Let V is a vector space over a field F. Prove that $\{v_1, v_2, ..., v_m\}$ is linearly dependent set of vectors if at least one of them is the zero vector.
- 3. Prove that the vectors (1, 0, 0), (1,1,0) and (1,1,1) form a basis of \mathbb{R}^3 , where R is the field of real numbers.
- 4. Define rank and nullity of a vector space homomorphism $T: U \to V$.
- 5. Normalize (1 + 2i, 2 i, 1 i) in C^3 relative to the standard inner product.
- 6. Let $T \in A(v)$ and $\lambda \in F$. If λ is an eigenvalue of T, prove that $\lambda I T$ is singular.
- 7. Define Nilpotent and Idempotent matrices.
- 8. Show that $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ is orthogonal.
- 9. If $T \in A(V)$ is Hermitian, then prove that all its eigen values are real.
- 10. Define unitary linear transformation.

PART B

ANSWERANY FIVE QUESTIONS

(5*8=40 marks)

- 11. If V is a vector space over F then show that
 - i) a0 = 0 for $a \in F$
 - ii) (-a)v = a(-v) = -(av) for $a \in F, v \in V$.
 - iii) If $v \neq 0$, then av = 0 implies that a = 0.
- 12. Prove that the union of two subspaces of a vector spaces V over F is a subspace of V if and only if one is contained in the other
- 13. If V is a vector space of dimension n, then prove that
 - i) Any n + 1 vectors in V are linearly dependent
 - ii) Any set of n linearly independent vectors of V is basis of V.
- 14. If V and W are two n-dimensional vector spaces over F, then prove that any isomorphism T of V onto W maps a basis of V onto a basis of W.

- 15. For any two vectors $u, v \in V$, prove that $||u + v|| \le ||u|| + ||v||$.
- 16. If $\lambda \in F$ is an eigenvalue of $T \in A(V)$, then prove that for any polynomial $f(x) \in F[x]$, $f(\lambda)$ is an eigenvalue of f(T).
- 17. Show that any square matrix *A* can be expressed uniquely as the sum of a symmetric matrix and a skew-symmetric matrix.
- 18. If $T \in A(V)$ is skew-Hermitian, prove that all of its eigenvalues are pure imaginaries.

PART C

ANSWERANY TWO QUESTIONS

(2 * 20 = 40 marks)

- 19. a) If S and T are subsets of a vector space V over F, then prove that
 - i) Sis a subspace of V if and only if L(S) = S.
 - ii) $S \subseteq T$ implies that $L(S) \subseteq L(T)$.
 - iii) L(L(S)) = L(S).
 - iv) $L(S \cup T) = L(S) + L(T)$.
 - b) If V is a vector space of finite dimension and W is a subspace of V, then prove that $\dim V/W = \dim V \dim W. \tag{10+10}$
- 20. a) If $T: U \to V$ is a homomorphism of two vector spaces over F and U has finite dimension then prove that $\dim U = \dim \ker T + \dim \operatorname{Im} T$
 - b) If U and V are vector spaces over F, and if T is a homomorphism of U onto V with kernel W, then prove that $U/W \cong V$.
- 21. Apply the Gram-Schmidt orthonormalization process to obtain an orthonormal basis for the subpace of R^4 generated by the vectors (1,1,0,1), (1,-2,0,0) and (1,0,-1,2).
- 22. a) Let $V = R^3$, and let $T \in A(V)$ be defined by $T(a_1, a_2, a_3) = (3a_1 + a_3, -2a_1 + a_2, -a_1 + 2a_2 + 4a_3)$
 - . What is the matrix of T relative to the basis $v_1 = (1,0,1), v_2 = (-1,2,1), v_3 = (2,1,1)$?
 - b) Investigate for what values of λ , μ the system of equations

 $x_1 + x_2 + x_3 = 6, x_1 + 2x_2 + 3x_3 = 10, x_1 + 2x_2 + \lambda x_3 = \mu$ over the rational field has

i) no solution ii) a unique solution iii) an infinite number of solutions. (10+10)
